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1.INTRODUCTION

Differential Evolution (DE), propogd by [Storn and Price, 19P% relatively a new
optimization techniqu& compaisonto Evolutionary AlgorithmgEAS) such as Genetic
Algorithms [Goldberg 1989, Evolutionary StrategyBack et al., 1991 and Evolutionary
Programming[Fogel 19944]. W.ithin a short span of around ##n years, DE has
emerged as one of tt@mple and efficientechnique for solvingglobal optimization
problems.t hasbeensuccessfully applied to diverse domains of science and engineering,
such as mechanical engineering desiBodalsky et al, 1999 [Joshi and Sanderson
1999, signal processingdas and Konar 20Q6chemicalengineering Wang and Jang,
2000, [Lampinen 199], machine intelligence, and pattern recogniti@mran et al.,
2004, [Das et al., 2008etc

Practical experience, however, shows that DE is not completely flawless. As pointed
out by[Lampinen and Zelink, 2000 DE may occasionally stop proceeding towsitte
global optimum even though the population has not converged to a local optimum or
any other point. Occasionally, even new individuals may enter the population, but the
algorithm does not progress linding any better solutions. This situation is usually
referred to astagnation DE also suffers from the problem of premature convergence,
where the population converges to some local optima of a multimodal objective
function, losing its diversity. Therobability of stagnation depends on how many
different potential trial solutions are available and also on their capability to enter into
the population bthe subsequent generationsafnpinen and Zelinka, 20Q0Further,
like other evolutionary computinglgorithms, the performance of DE deteriorates with
the growth of the dimensionality of the search space as well.

Several instances are available in literature whichs@nimproving the performance
of DE. A brief review of some of the modificatiorssiggestedn the basic structure of
DE is given in Section IlI.

The modifications show that even a slight variation in the basic structure of DE helps a
lot in improving its performance. Our objective in this study is to observe the combined
effect of someof these variations. We have concentrated on three aspects of DE namely:
initial population, mutation and DE structure which is based on two populationent
population anddvancepopulation.

(i) Generation of initial population is a crucial task a population based search
technique. In case no a priori information about the solution is available, random
initialization is the most popular method of generating the initial population.adviaaet
al. [Maaraneret al., 2004 introduced quasi randosequences for population initialization
in Genetic Algorithms. Their results showed that though there is an improvement in the
quality of solution, there is no noticeable change in the convergence rate while using
quasi random numbers to generate the ahitpopulation. Moreover, from the
programming point of view, the generation of quasi random numbers is quite difficult.
An interesting method to generate the initial population was suggesfétabhpamayan
et al., 2008 where they usedpposition basedelarning (OBL) [Tizhoosh, 200b to
generate the initial population. This method not only improves the quality of solution but
also it helps in faster convergence. Further, it is very easy to program. The basic idea
behind OBL is the simultaneous consideratiof an estimate and its corresponding
opposite estimate to achieve a better approximation for the current candidate solution.
Mathemattally, it has been proven irRhhnamayan et al., 2008hat the opposite
numbers are more likely to be closer to th&ropl solution than purely random on&ge
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have considered ODFRahnamayan et al., 2008n which this scheme is useas one of
the parent algorithm.

(i) The second aspect which is the focusthif study is mutationlt is the most
important operatoof DE. The mutation operatioutilizesthe vector differeces between
the currentpopulation members for determining both the degree and direction of
perturbation applied to the individual subjectluf operation Besides the basic mutation
scheme®f DE some other variants of mutation are also available in literature (please see
Section IIl).In the present study weave considered tournament best procedsaglo
and Ali, 2006 to selectthe base vector for therocess oimutation.The correspondig
DERL algorithm Kaelo and Ali, 2006 is taken as the second parent algoritfirhe
rationale of using tournament best process is to prevent the search from becoming a
purely random search or a purely greedy search.

(iif) The third aspect is thgeneralstructure of DEwhich maintains two populatian
currentpopulation and madvancepopulation.In the present studye have considered a
single population structure of DBBabu and Angira, 20Q06Thompson, 2004 For the
purpose of comparison we have used the algorithm given irafl&]parent algorithm for
MDE. In [Babu and Angira, 20Q6the algorithmis named as MDEIn order to avoid
confusion we shall refer to it as MDEL1 in the present study.

We can say tha¥IDE is motivated by the law of synergy which states that a combined
effort is always better than the individualistic effort

As already mentioned there are several modified versions of DE available in literature.
The ideaof the present studis to build a DE framework which gmpleto understand
and easy to apply, therefore we selected three simple but efficient modifications which
have reportedly given good performance over the other contemporary optimization
algorithms.

Here we would likeo mention that a preliminary version of this work has already been
presented in a conferencalifet al., 2009. However, in the present study we present its
elaborated version. Heme provide a comprehensive set of experimental verifications of
the propsed MDE. Specifically, we have investigated the convergence speed and
robustness, effect of dimensionality and population size, effect of jumping on the
proposed MDE and its comparison with otaégorithms. The numerical experiments are
conducted on a eoprehensive set of 25 standard benchmark problems, 7 nontraditional
shifted functions and three real life problems.

In order to investigate the effect of fusion, the proposed MDE is compared with DE
and with its parent algorithms ODE, DERL and MDE1l. We ehaliscussed the
improvements made by the parent algorithms over DE, individually and the improvement
made when they are fused together in MDE.

Further, MDE compared with some of the other latest modifications of DE namely
jDE, JADE and SaDE. The compansof algorithms is done using the standard
performance measures like error, number of function evaluations (NFE) etc. The
performance of the algorithms is also analyzed statistically using various tests like
Wilcoxon test, Bonferrani Dunn test etc.

The ramainder of the paper is structured as follows. Sectiodescribes the basic
Differential Evolution.In Sectionlll we give a brief review of the work done in the past
to improve the performance of basic DR.Section IV weexplainthe proposediDE
algorithm Performance metrics andxmerimental setting are given in SectionV.
Problemsused in the present studye listed in SectioW|. SectionVI| providesresults
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and discussionfor MDE, DE, ODE, DERL and MDEA brief description of other state
of the art algorithms(jDE, JADE and SaDE)used in the present study atideir
comparison with MDE is given in Section VlIFinally the conclusions based on the
present study amrawnin SectionlX.

2. ABRIEF INTRODUCTION TO DIFFERENTIAL EVOLUTION

Like all other population based search algorithBis,starts with a populatio8 of NP
candidate solutions{g, i = 1, . . . NP, where the indekdenotes thé" individual of the
population and Glenotes the generation to which the population beldfgsthree main
operators of DE are mutation, crossover and seleatiach may be defined as follows:

Mutation: Once the initialization is complete, DE enters the mutation phase. In this
phase alonorvector is created corresponding to each membtarget vectorX; g in the
current generation. The method @katingdonor vector differentiates one DE scheme
from anotherThe most often used mutation strategies implemented in the DE codes are
listed below.

DE/rand/1:V, = X.otF*(X ¢! Xrg,e)

DE/rand/2:V, s = X, o +F* (X, o ! X, o) +F* (X, ¢! X, )
DE/best/1V, o = Xy T F* (X 6! X, o)

DE/best2:V, o = Xpeqe + F* (X, 6 = X, o) +F* (X, 6 = X, o)
DE/randto-best/1:p, . = X, .+ F* (X, 6! X, )+ F* (X, ! X, )

The indicesry, 1y, 3, 4 andrs are mutually exclusive integers randomly chosen from
the rangg1, NP] and all are different from the base indexhese indices are randomly
generated once for each vectbhe scaling factoF is a positive control parametand is
used for scaling thdifference vectorsXuestcis the individual having the best fithess
function value in the population at generation G.

Frequently referred strategies implemented in the puwldiain DE codes for
producing the donor vectoese alsaavailable online at
http://www.icsi.berkeley.edustorn/code.html.

Crossover once thedonor vector is generateth the mutation phasehe crossover
phase of DE is activated. The crossover operation of DE helps in increasjatehéal
diversity of the DE population. The DE family of algorithms may use two types of
crossover schemesxponentialexp)andbinomial (bin). During the crossover operation,
the donor vector exchanges its components with the target Wégtdo form atrial
vectorUig+1 = (UgjG+1, - - - » Wic+s) - IN the present study we shall follow thamomial
scheme. According tthis scheme, the trial vectors are generated as follows:

_#vguifrand ! G" j=k
o K otherwise

Where,j=1...nk! {1,..., n}is arandom parameterQs index, chosen once for.each
Cr is a positive control parametset by the user.

A general DE scheme may be defined as DE/X/Y/Z, where DE denotes the Differential
Evolution algorithm; X represents a string denoting the vectobetoperturbed; Y
indicates the number of difference vectors considered for perturbation of X and Z stands

for the type of crossover being used.
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Throughout the present study we shall foll®g/rand/1/binversion of DE which is
perhaps the most frequently used version and shall refer to it as basic version.

Selection:The final phase of the DE algorithm is that selection, which determines
whether the target or the trial vector generated in the mutatidrcrossovephass will
survive to the next generatiohhe population for the next generation is selected from the
individual in current population and its rcesponding trial vector according to the
following rule:

X ="Ui.e+1if f (Ui.e+1) tf (xiG) (3)

g X otherwise

Thus, each individual of thedvancetrial) population is compared with its counterpart
in the current population. The one with the lower objective function value will survive
from the tournament selection to the population of the next generation. As a result, all the
individuals of the netxgeneration are as good as or better than their counterparts in the
current generation. In DE trial vector is not compared against all the individuals in the
current generation, but ondgainst itscounterpart in the current generation.

The computationadteps of basic DE are as follows:

Step 1:Randomly generate a populatiset Sof NP vectors, each of dimensiam as
follows: Xij= Xminj + rand(0, 1)(¥naxXmin)), WhereXminj and xmax; are lower and
upper bounds for j"™ component respectivelyand(0,1)is a uniform random
number between 0 and 1.

Step 2: Calculate the objective function vali(e;) for all X;.

Step 3:Select three points from population and generate perturbed indivluaing
equation (1).

Step 4 Recombineeachof the targd vector X; with perturbed individual generated in
step 3 to generate a trial vectdrusing equation (2).

Step 5 Checkwhether each variable of the trial vector is withlie specifiedange. If
yes, then go to stepdiherwisebring it within range usin@i; =2* Xminj - Uij ,if
Uij < Xminj @NdUij =2* Xmaxj- Uij , if Uij> Xmax; and go to step 6.

Step6: Calculate the objective function value faal vector U;.

Step 7:Choose better of the two (function value at target and trial point) using equation
(3) for next generation.

Step 8:Check whether convergence criterion is met if yes then stop; otherwise go to step
3.

3. ABRIEF REVIEW OF PREVIOUS WORK

Several attempts have been made to imptheailtimate performancef DE. These
variationsmay broadly be classified as (1) investigatoimum choice oDE control
parameters (2)its hybridization with other search techniqug8) development/
modification in the mutation/ crossover/ selection operators of DE @hdther
variations. In this section we give a brief reviewsome ofthe modificatios suggested
in the structure of DE.

DE has three main control parameters namely population size, crosate/€r and
scaling factorF. A number of investigations have been carried out to determine the
optimum settings of these parameters. Storn and Price [1] indicated that a reasonable
population size could be between &d 1M, wheren denoteghe dimensionality of the
problem. They also recommended that a good initial choi¢eaain be 0.5. Gamperkt
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al. in[Gamperle et al., 2002uggested that the population size should be betweand
8n, scaling factoF should beD.6 and the crossoveate Cr should ben the range of [0.3,
0.9] for kest results. Ronkkonen et al., 2005uggested using values between [0.4,
0.95] with F=0.9 being a good initial choice. They further pointed out thaCthealues
should lie in [0, 0.2] when the funoti is separable while it should lie in [0.9, 1] when
the functionOs parameters are dependémivever, a drawback in their analysis is that in
case of real life problems, it is very difficult to examine in advance the true nature of the
function. Thus wecan see that there is no concrete proof/ discussion available in
literature for the selection of parameters. The researchers rely either dgorfimg of
parameters for a particular problem or consider-a@fptation techniques to avoid
manual tuning othe parameters of DE. Liu and Lampinen introduced Fuzzy Adaptive
Differential Evolution (FADE) Liu and Lampinen2005 using fuzzy logic controllers,
Qin et al proposed a SeHdaptive DE (SaDE)Qin et al., 200p algorithm. In this
algorithm, the trial vector generation strategies and their associated parameters are
gradually seHadapted by learning from their previous experiences of generating
promising solutions[Zaharie 2003 proposed a parameter adaptation strategy for DE
(ADE) based orthe idea of controlling the population diversity, and implemented a
multi-population approach. LatdiZaharie and Petci2004] designed an adaptive Pareto
DE algorithm for multiobjective optimization and analyzéd parallel implementation.
[Abbass 2002] self-adapted the crossover ra€r for multi-objective optimization
problems, by encoding the value ©f into each individual and simultaneously evolving
it with other search variables. The scaling fagtavas generated for each variable from a
Gaussan distributionN (0, 1).[Omranet al, 2005 proposed an algorithm called SDE in
which they introduced a sedfdaptive scaling factor paramefeand generated the value
of Cr for each individual from a normal distributidh (0.5, 0.15). RecentlyBrestet al,
2007 proposed DE algorithm using adaptivé and Cr. Although, most of the self
adaptive versions of DE, involve adaption@fandF, work has also been done on the
adaptionof the population size.Teng et al. 2009] proposed DE with SelAdapting
Populationdor DE in DESAR

Other class of modification in DE involveits hybridization with some other
techniqus. [Yanget al., 2008 proposed hybridization of DE with Neighborhood Search
(NS) and called their algorithnlSDE. h this algorihm mutation is performed by
adding a normally distributed random value to each targetior componentLater,
[Yanget al, 200§ used SeHadaptive NSDE in the cooperative coevolution framework
for optimizing large scale neseparable problems (up to ID@mensions)[Hendtlass
2001 hybridized DE with Particle Swarm Optimization (PSO). Hsed the DE
perturbation approach to adapt particle positions. Pas€iplesitions are updated only if
their offspring have better fitness.
At the specifiedntervals, the swarm serves as the population for DE algorithm, and the
DE is executed for a number of generations. After execution of DE, the evolved
population is further optirzed using PSO.Zhang and Xie, 208 and [Talbi and
Batchoue, 204] used theDE operator to provide mutatioirs PSQ [Kannan et al.2004
applied DE to each particlef the swarmfor a number of iterations, and replaced the
particle with the best individual obtained from the DE proc§@snran et al 2008]
proposed a hybrid vemn of Bare Bones PSO and DE called BBDE. In their approach,
they combined the concept of barebones PSO with self adaptive DE strdtélogesy et
al., 2009 proposed a DEPSO algorithm in which a random moving strategy is proposed

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****



Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

to enhance the algorithOs exploration abilities and modified DE operators are used to
enhance each particleOs loaalrig ability. (Wu and Gu, 2009roposed Particle Swarm
Optimization with prior crossover differential evabri (PSOPDE). Caponioet al.,
2009 proposed a hybridization of DE with three metaheuristics viz. PSO and two local
search method#\ Free SearclbE (FSDE) was promed by Pmran and Engelbrecht
2009. In their algorithm they hybridized DE with a newly developed OFree Search
Algorithm® am Opposition Based Learning. Hybridization of Nelder Mead algorithm
with DE for solving constrained optimization problemas suggested irAhdriana and
Coello Coello 200p

Besides optimum choice for parameters and hybridization of Rifmesother
modificaions in DE include development of new mutation schefft&m and Lampingn
2003] proposed arrigonometric Mutation OperatgfTMO). In TMO, the donor to be
perturbed is taken to be the centre point of the hypergeometric tri#aglent Centric
and LaplaceMutation were suggested byant et al.2009 and [Pant et al.2009
respectively. The parent centric mutation operator is inspired by the PCX operator given
by Debet al.in [Deb, 2005, while in Laplace mutation the scaling factowas replaced
by a random number following Laplace distribution @mhbsolute weighted difference
between the vectomsas used.Fant et al2009 suggested a mixed strategy DE (MSDE)
in which two mutation strategies were used in a competitive gameoemant. More
recently a new mutation operator based on wavelet theorysugggested bylLfi et al.,
2009. A crossover based local search method forvizis proposed ifiNoman and lba
2008, 2003

Some other interesting modifications in DE include the o$eopposition based
learning (OBL) for generating the initial populatidty [Rahnamayan et aR00§.
[Rahnamayanand Wang,2008 also applied it for solving largscale optimization
problems [Yang et al.2009 developed an adaptive coevolutionddf. They applied
their algorithm, called JACG, for solving large scale global optimization problems.
[Brest et al.2009 performed ¢namic optimization using DETing and Huang2009
varied the numberof difference vectors in DE[Epitropakis et al.2009 suggested
evolutionary adaption of the control paramstef differential evolution[Tasgetiren et
al. 2009 includedof vaiiable parameter search in D&ome variants and appdittons of
DE canalsobe found in[Montgomery, 200B [Wang et al., 209), [Peng et al., 2009],
[Chakraborty, 2008

4. STRATEGIES USED IN THE PROPOSED MDE ALGORITHM

In this section we describéne strategies / concepts used in themposed NDE
algorithm which are:opposition basedhitial population random localizatiorand one
populationDE framework.To make theproposed algorithm self explanatory, first we
will describe the threschemedbriefly.

A. Opposition based initial population

It is based orthe concept of opposite numbers. We can say that ill,! ! is a real
number, therits opposite numbex®is definedas

e 4
This definition can be extendedobr higher dimensionslso as suggested ii4]. If
Fror 1 bis a point in adimensional space, whete!! 1t 1111 and!, !

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****



Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

[ et 1} then the opposite point Phroriifin it is
completely defined by its components
PLrnr ey (5)
Now, by employing the opposite point definition, the oppositlmasednitial population
can begeneragdin three simple steps:
¥ Generate a poirit ! I1, 11,11 11,1 and its opposite T IR T
in ann-dimensionakearchspace (i.e., a candidate solution).
¥ Evaluate the fitness of both poiritéx) andf(X0) .
¥ Ifr (Y1 it (for minimization problem)thenreplaceX with X9 otherwise,
continue withX.
Thus we see thathe point and it®pposite point are evaluated simultaneously in order to
continue with the fitter one.

B. Randomized Localization

According to this rule, thredistinctpoints X1, X, and X3 are selectedandomly from
the populationcorresponding to target poit§. A tourrament isthen held among the
three pointsandthe region around the best point is explorEdat is to say ifX;, is the
point having the best fitness function value then the region around it is seavithete
hope of getting a better solutiofror the sake of convenience we will denote the
tournament best point gsay) Xw. Assuming thatXy, = X, the mutation equation (1)
becomes

V!!!!! ! !!"!! Lt ”!!!G-I !!!!!!

This variation gradually transforms itself into search intensification feature for rapid
convergence when the points in S form a cluster around the global minima.

In order to see the effect of tournament best method for mutation, we shall first discus
in brief two comnon strategies of DE; DE/best/1/bin and DE/rand/1/bin. In DE/best/1/bin
the base vector is always selected as the one having the best fitness function value. We
can see that here the probability of selecting the best vector as the base vector is always 1.
This strategy may provide a fast convergence in the initial stages. However, as the search
procedure progresses it may lead to the loss of diversity in the population due to its
greedy nature resulting in premature convergence. On the other hand, thgy strate
DE/rand/1/bin is completely random in nature. Here all the points for mutation are
randomly selected and the best point of the point of the population may or may not be
included in them. This strategy, due to its random nature helps in preservingetsityli
but may lead to a slower convergence. Now, if we look at the tournament best method we
see that although the three points for mutation are randomly selected, the base vector is
always chosen as the one having the best fithess. This makes it paithgrgreedy nor
purely random in nature, but provides a localized effect which helps in exploring the
different regions of the search space around the potential candidates.

Making use of hypergeometric distribution, we can say ttiatprobability of gtting
the best vector among the three chosen péntsiutationis (|, )! (¥, )! (%, ), where
M is the number olbest points in the population. Initialli is very much likely that there
is one best poinbut asthe evaluation process proceeds tiuenber of best points keeps
on increasing.

In case of strategyDE/rand/1/binthe probability thathe best point of the population
is among the three chosen points for mutatiofj i# (*,,7 )! (', ) and the probability

that the best point is also setied as the base vectorsis [} ) (') )! ()] When
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we appy the tournament best strategy the probab#ijecing the best point from the
three chosen will be 1. Thus the probability that the selected base vector is the best
solution of the populatiobecomes ! [(\ ) (", ) ()]

Thus we see thahe probability of selectinthe best point of the population base
vector, for tournament best strategy lies between the probabilities of DE/rand/1/bin and
DE/best/1/bin.

SCIE G O TE) L) ()]t This helps in maintaining the
éxploration and exploitation capabilities of the proposed MDE ensuring fast convergence
and balanced diversity.

C. Concept of single population

It wassuggestedh [Babu and Angira, 2008 hompson, 2004 Theyhave discussed in
their work that in the basic structure of D0 populationgcurrent and advancee
considered simultaneously in all the iterations which results in the consumption of extra
memory and CPU time leading to higher number of funcggaluations. On the other
hand in a singl@opulationDE, only one population is maintained and the individuals are
updatedas and when a better solution is found. Also, the newly found better solutions can
take part in mutation and crossover operatiothie current generation itself as opposed
to basic DE (where anothpopulationis maintained and the better solutions take part in
mutation and crossover operations in next generation). Updating the pomgléation
continuously enhances the convergerspeed leading to lesser number of function
evaluations as compared to basic DE.

Based on the above modifications we will now discusscihmputationalsteps of
MDE which are same as that of basic DE given in Section Il and differ it only in the
following steps
1. initialization
2. mutation
3. populations structure

A point to point comparison afiorking two algorithmsDE and MDEis given in Table
l.

5. PERFORMANCE METRICES AND EXPERIMENTAL SETUP

In order to authenticate the viability of the proposed MDE algorithm we conducted a
series of experiments following various criteria to test its efficiency, robustness and
reliability. These criteria have been widely used to analyze the performance of an
algorithm.

Performance Metrics

¥ Number of function evaluations (NFE)

¥ Average error = known global optimu® value to reachVTR (desired
accuracy)

¥ PercentagéAcceleration rate (AR) = ratio of thdFE of the algorithm to be
compared and theN\FE of the algaithm to which we want to compare
[Rahnamayan et al., 20P8Thus the%AR of MDE in comparison to DE will
be:
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%AR = (11 ) w1
g

! 1
¥ Average AR =%, !" |

I NHS% 1M NHS%E&'(
¥  Success rate (SR) T
! o 1" 1" I"HS%&

¥ Average SR =|!—Z§! M
WhereN denotes the number of problems.

Performance Metrics Il

The proposed algorithm is also analyzed statistically using various tests like Wilcoxon
test, Friedmann test and Bonferrani Dunn tes{@#zcia et al., 2009 Using these tests,
we performednultiple-problem analysisa comparison of algorithms over more than one
problem simultaneously. In the multipteoblem analysis, due to the dissimilarities in the
results obtained and the small size of the sample to be analyzed, a parametric test (paired
t-test) may reach erronas conclusions so wlave analyzel the results by both,
parametric and non parametric tests.

All the tests used here obtain thssociateg-value, which represents the dissimilarity
of the sample of results. Hence, a Ipwalue points out a critical ddrence. In this
study, wehaveconsideeda level of significancé = 0.05and 0.1. Ap-value greater than
I indicates that there is no significant difference between the algorithms.

Experimental SettingsD after conducting several experiments aeterring to various
literatures we took the following settings for all the experiments unless otherwise
mentioned.
¥ Population SizgNP) = 100 for traditional benchmark problems and 500 for
nontraditional problemgZhang and Sanderson, 2Q0fRahnamayaiand Wang,
200§.
¥  Scaling/ amplitude Factdér = 0.5[Rahnamayaet al., 2008
¥ Crossover Rat€r = 0.9[Rahnamayaet al., 2008
¥ Maximum NFE = 100004, wheren is the dimension of the problefiNoman
and Iba, 200B
¥ VTR = 108 for all the test problems exgenoisy function ;) for which it is set
as 10°[Zhang and Sanderson, 2009
Software used for statistical analyBisve used the following softwasdor analyzing the
proposed algorithm.
¥ SPSS
¥ MATLAB
PC configuratiorb All the algorithms have been executed on dual core processor with
1GB RAM. The programming language used is DEV C++. The random numbers are
generated using inbuitand () function with same seddr every algorithm
In order to have aafr comparison for all the experiments, the parameter settings are
kept same and the reported values are the average of the res0lisdépendent runs.

6. PROBLEMS USED IN THE PRESENT STUDY

In the presentstudy we used thredypes of problems given below in order to
investigate the effectiveness of the proposed MDE algorithm.
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A. Traditional Benchmark problems

First of all we scrutinized thperformance of the propos@dDE on atest suite of
twenty five standard benchmark problems taken fridgdahnamayan, 2008[Zhang and
Sanderson, 20Q9with varying degrees of complexities ahdving box constraints. The
test set includes fixed, lower dimension problems as well as scalable problems for which
the dimen®n can be increased to increase the complexity of the profleenproblem
set though small act as a good launch pad to investigate the effectiveness of an
optimization algorithm.Mathematical models of the functions along with the true
optimum value argiven inTablell (A).

B. Real life problems

The effectiveness of an algorithm can be justified, if it is able to solve the real life
problems with equal ease with which it solved the test problems. Therbefskiles
considering the benchmark functions we have also takeze teal life applcation
problers which aretransistor modeling problerfrequency modulation sound parameter
identification problem and spread spectrum radar-paiyase code design problem from
[Price, 198Band [Das et al, 20009 Mathematical model of real life problems are given
below.
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TABLE |
POINT WISE COMPARISON OFWORKING OFMDE AND DE ALGORITHMS

Operation DE MDE

Initialization | Construct an initial populatiof Randomly construct a population
S of NP individuals, dimensior] of NP individuals, dimension o
of each vector being n, usirl each vector being nusing the

the following rule: following rule:
Xj= Xminj + 1and(0, 1)Gtaxy | %= Xminj+ rand(0, 1)(maxXmin,)
Xmin,), Where Xminj and Xmax; are lower

Wherexminj andXmaxjare lower| and upper bound fq'fh component|
and upper bound for" | respectively and rand(0,1) is
component respectively arl uniform random number between
rand(0,1) is a uniform randor and 1.

number between 0 and 1. Construct another populatio®P
of NP individuals using thg

following rule:

Pog b by o b b o By

Where pj; are the points o
population P.

Construct initial population ¢
taking NP best individuals from
union ofP and OP

Mutation Select randomly three distin{ Select randomly three distin
individuals X1, X andX;3 from | individuals X1, X, and X3 from
population S and perforn population S and perform mutatig
mutation using formula: using formula:

N e T N T
Where individual X is | Where individualXy (=X1) is the
randonty chosen(i.e. it may be| individual having thebest fithess
any one from the thre( value among the threadividuals

individuals).

Crossoer: Perform crossover according | Perform crossover according
equation (2). equation (2).

Selection Perform selection of candidaty Perform selection of candidates f
for the next generation usin the next generation using equati
equation (3). (3).

Structure Maintains wo populations| All DE operations are performe

operations performed iourrent| on a Single population.
population and data stored in
advance population.
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TABLE Il (A)
NUMERICAL BENCHMARK FUNCTIONS WITH A VARYING NUMBER OFDIMENSIONS (n).
FUNCTIONS SINE AND COSINE TAKE ARGUMENTS INRADIANS. THE MATRIX A USED IN
FUNCTION f.,, THE VECTORSaAND b USED INf,s AND THE MATRIX aAND VECTORc USED IN
f,1 Df,s ARE DEFINED IN THE APPENDIX fpn DENOTES THE MINIMUM VALUE OF THE

FUNCTION.
Test funtlztions n Range frnin
L) Z!; 30 [-100,100] 0
Ly Y [ 30 [-10,10] 0
L) Z Z!! 30 [-100,100] 0
NOIREUNIENINS! 30 [-100,100] 0
LO)! Z[' TN TR 30 [-30,30] 0
L0 Z!“!! L 30 [-100,100] 0
L) ! Z!!;! I"HSY%& [1 1) 30 [-128,128] 0
() =Z! N NITH] 30 [-500,500] | -12569.5
L()! Z[! PromorgQarr) e 30 | [5.12,5.12] 0
Lo 01w (1o I!—Z!!! Lo (Z:—r'#! ! !!> 20 (32, 32] 0
o
Iy ! II—ZII BE (%). ! 30 | [-600,600] 0
! :—[| DY Z(!!! D'
RTINS NI (I !)!]
! . P ) 30 [-50, 50] 0
!!!!
PRI
NCERDRIN
NCNRIRIDY SRR
' TN EEIRTIE
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Y [!"#!(!!!1)

! Z(xi! DI ety Ol

30 [-50,50] 0
LGy ! DNt !"#!(!!!!)]
! Z!!!!n!!"" "
R ! B [-65.536,
e ! |t ZW] 2 65 530 | 0-098004
Lo ! Z[!’! w 4 [-5,5] 0.0003075
TR !“!!.!f! :—!f! TR 2 [-551 | 1 0316285
o - Ly .
RGN
' b '
NN 2 [-2.2] 8

T N

e 1) Z!!exp [—Z ar (! !Iu)’] 3 [0,1] -3.88278
To 11 2!!!"# [! ZZH!!”(!!! !!u)!] 6 [0,10] -3.3237

Jr Z[(! Pyt 4 [0,10] -10.1532
Ly 11 i[(!! DO SRR 4 [0,10] -10.4029
lpp! ! i[(!! EOQ T ] 4 [0,10] -105364
fo ! !Z!;”!(!Z!u !"!>!1 (12!!! !"1>4 30 [-5, 10] 0
e 11 !"#H(;,)!"#!!!!!.!!!"# Lt 7!1!)121 [ 2 [-10, 10] -1

Frequencymodulation sond parameter identificationQas et al., 200P

Frequencymodulated (FM) sound synthesis plays an important role in several modern
music systems. Here we consider a system that can automatically generate sounds similar
to the target soundst tonsists of an FM synthesizer, a DE optimizer, and a feature
extractor. The DE algorithm initializes a set of parameters and the FM synthesizer
generates the corresponding sounds. In the feature extraction step, the dissimilarities of
features between ¢htarget sound and synthesized sound are used to compute the fithess
value. The process continues until synthesized sounds become very similar to the target.
The specific instance considered in this paper involves determination of six real

parametersX = {a;, Wi, & W &, wsy of the FM sound wave given by
y=a" sin(V\{" t /+a" sin( Wt/ o+ g sin(wo ))) for approximating it to
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the sound wave given S0 710 si(50t /+ 15 siff 48t/ + 20 sfn 49/ )))

wherd! | 111" | The parameters are defined in the range-6.4] 6.35].The fitness
function isdefined as minimizing the sum of square error between the evolved data and

the model data as follows:
100

f(a. W, a,w, a, V\é)—" (XD ()

It is a highly complex multlmodal problem with a strong interrelation among the
variables. The optimum value of the problermzeéso.

The spread spectrum radar gephase code design problends et al., 200p

A famous problem of optimal design arises in the field of spread spectrum radar poly
phase codes. Such a problem is very well suited for validatigdpbal optimization
algorithm like DE. A formal definition of the problem can be given: as

min f (X) = max{f, (X),..., f,. (X)}

Where
X={(xp..,x,)" R"|GF x# 20 ,j=1..n
and m=2n1,
fa1(X) = cm (Zl %i= 1,2,..0
With j 1t ]J+1 !
fa(X) =5+ ( c0$ (Z %i =12,.5!
-'+1 L 14+1 '

LX) = fi(X),i=12,..m

Here the objective is to minimize the module of the biggest among the samples of the so
called autocorrelation function which is related to the complex envelope of the
compressed radar pulse at the optimal receiver output, whelevariables represent
symmetrized phase differences.

The objective function of this problem for tkdémensionn=2 is illustrated in Fig. .1
The problem belongs to the class of continuousbmax global optimization problems.
They are characterized by tfaet that the objective function is piecewise smooth

Transistor Modeling Price, 1983
The mathematical model of the transistor design is given by,
4
Minimize f(x)=$*+1 (£ + ".%)
k=1

Where #, = (11 X%, )X; {exp[Xs (9 ! Tyi%; " 1071 g %" 1031 Bgg + g%,
#e = (11 %) X{exp[Xs (G ! Goic ! GaXe " 10° + 9% " 10°°)]! Bgg X, + Gy

TEXX ! XX,
Subject to:x. 1 o and the numerical constang, are given by the matrix
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& 0.485 0.752 0.869 0982 #
$0.369 1.254 0.703 1.455 :
%5.2095 100677 229274 20.21535
233037 101779 111461 191267,

%8\5132 1118467 1343884 2114823
This objective function provides a leastmof-squares approach to tlselution of a
set of nine simultaneous nonlinear equations, which arise in the context of transistor
modeling.

-\\\\“\\\‘, .
\\\\\\%“0 /

Figure 1: Objective function of spread spectrum radar pphase code design problem for n=2

C. Nontraditional Benchmark Problems of CEC 2008

We validated the efficiency of proposédDE on a selected set afecently proposed
benchmark testuitefor CEC 2008special session and competition on large scale global
optimization [Tang et al., 2007 This test suite was specially designed to test the
efficiency and robustness of a global optimization algorithm like B considered
sevenproblemsfrom this test suitand tested them for dimension 500. It includes the two
unimodal (k and F) andfive multimodal (k- F7) functions among whicfour are non
separable (FF; Fs, F7) and three separable;(F, Fg). Name of the functions and their
properties are listed in Table(B).

TABLE Il (B)
SELECTED BENCHMARK PROBLEMS PROPOSED INCEC200865]. ALL PROBLEMS ARE EXEWTED FOR
DIMENSION 500.

Fun Name Properties Search Space

F1 Shifted Sphere Unimodal, Separable , scalable [! 100, 100]

F2 Shifted Schwefébs2.21 Unimodal, Nonseparable [! 100, 100]

F3 Shifted Rosenbrodk Wulti-modal, Nor_aseparable. A narrow valley [1 100, 100]
from local optimum to global optimum.

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****



Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

Fa Shifted Rastrigifs Nulti-modal, Separaple Huge number of loc [15, 5]
optima

F5 Shifted Griewanid Multi-modal, Norseparable [! 600, 600]

F6 Shifted Ackley® Multi-modal, Separable [!32, 32]

F7 FastFractal DoubleDip Multi-modal, Norseparable [-1, 1]

7.RESULTS AND DISCUSSIONS

A. Comparison of MDE and its parent algorithms with DE

The proposed MDE algorithm is a fusion of three other algorithms MDE1, ODE and
DERL. Therefore first of all we comparehet performance odll these algorithms with

the basic DE in terms of the various performance criteria mentioned in the previous
section. In Tabléll (A) we haverecorded the performance of all the four algorithms in
terms of error and standard deviation. From this table we can see that out of 25 test cases
MDE outperformed the other three algorithms in 10 cases in terms of both error and
standard deviation. In 13 cased #le algorithms gave similar results while in the
remaining two cases MDE1 and DERL gave the best performance.
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MAXIMUM NFE = 10000*n, n is DIMENSION OF THE PROBLEM

TABLE IIl (A)
COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD

BENCHMARK PROBLEMS IN TERMS OFERROR AND STANDARD DEVIATION (8d.). THE BEST
RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACEEACH ALGORITHM IS RUN FOR

n Error (Std.)
Fun DE MDE MDE1 ODE DERL
f, 30 5.24848€32 1.77622€76 3.43423e48 6.34393e41 3.15789¢63
(2.50302€32) 6.41905€78 8.439436e50 2.40300e43 8.92424e65
f, 30 7.64876€l6 9.76428€38 4.23421e25 3.44593e21 2.10125e31
(5.96538¢16) 6.74634€38 3.45932e26 3.49532e25 7.48388e34
f, 30 1.77664€30 1.07703€75 3.45543e38 7.43932e34 1.56214€62
(1.04434€30) 4.44153e77 1.38309e40 4.30094e35 3.40335e60
f, 30 2.57862e04 1.22089€09 9.23275e04 4.49593e04 6.54522e04
(1.51977€07) 6.95936€09 2.48839€05 6.43490e04 5.30902e04
o 30 1.74229€01 1.14867e25 2.34439€02 7.32341e01 4.13605¢€14
(1.43011e+00) | 1.52704e26 | 1.24943e+00| 1.82344e+01 | 8.49383el7
0 0 0 0 0
fo 30 0 0 0 0 0
f, 30 7.08548€03 1.91822¢03 3.43094€03 5.39234€03 3.32073e03
(6.67423€03) 2.51635e03 3.40023e03 4.30893e03 3.49588€03
o 30 6.81866e+01 | 2.02660e+00 | 1.34393e02 1.10366e+01 | 1.42086e+02
7.72931e+01 | 1.18452e+01| 1.29922e+01| 1.39020e+01 | 1.44324e+01
o 30 1.49594e+02 | 4.92040e+01 | 1.30031e+02| 1.13584e+02 | 1.24723e+02
1.70130e+02 | 1.49244e+01| 2.30439e+01| 3.00283e+02 | 9.43885e+01
3.69735¢el5 3.69735el5 3.69735¢el5 3.69735el5 3.69735¢el5
flO 30
0 0 0 0 0
0 0 0 0 0
fus 30 0 0 0 0 0
1.35360e19 1.35360€e31 4.49594e21 1.04493e19 3.54594e23
fi2 30 0 0 0 0 0
1.29115€e19 1.29115€29 3.45943e20 1.03113e19 5.43222e22
f13 30
0 0 0 0 0
0 0 0 0 0
f1a 2 0 0 0 0 0
s 4 0 0 0 0 0
4.84870e20 3.57137€20 4.59043e20 4.59043e20 4.59043e20
e 5 0 0 0 0 0
2.22045e16 2.22045e16 2.22045e16 2.22045€e16 2.22045e16
o 5 0 0 0 0 0
0 0 0 0 0
o 5 0 0 0 0 0
4.44089¢16 4.44089¢16 4.44089¢16 4.44089¢16 4.44089¢16
; 3 3.00012e06 3.00012€06 3.00011e06 3.00011e06 3.00011e06
1 4.44089¢16 4.44089¢16 4.44089¢16 4.44089¢16 4.44089¢16
o 6 4.75550e02 3.56650€02 3.75550€02 3.8675e02 3.2675e02
5.82455e02 5.44837€02 5.44837€02 5.44837€02 5.44837€02
by 4 0 0 0 0 0
1.58882¢15 1.58882¢15 1.58882¢el5 1.58882¢15 1.58882¢15
fy 4 0 0 0 0 0
1.48621el5 1.68520e15 1.68520el5 1.68520e15 1.68520e15
s 4 0 0 0 0 0
1.77636€l5 1.77636€15 1.77636€l5 1.77636€15 1.77636€15
o 30 1.95165€32 1.47748€76 5.32332e42 3.32494€38 1.12489e64
2.06563e32 5.93376€77 8.34993e43 7.39920e41 5.94992e67
s 5 0 0 0 0 0
0 0 0 0 0
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However, on the basis of the number of function evaluations (NFE) taken by all the
algorithms for which the results agiven in Tablelll (B) we see that MDE gave a
superior performance in comparison to other algorithms in 24 out of 25 cases. DE, ODE
and MDE1 were not able to solve the fifth functihwhile none of the algorithms were
able to reach the desired accuracy of & the functionfy and were therefore terminated
when the maximum NFE (= 1@¥ was reached. On an average the NFE taken by the
proposed MDE algorithm for solving 25 problems is only 40318.7. While the average
NFE taken by DE, ODE, DERL and MDE1 are 74840.4, 72770.1, 44803.7 and 70861.6
respectivelyThe performance graphs of few selected functions are illustrated in Rigure
Thesegraphs are drawn according to the fixed accuracy and not according to fixed NFE.

The faster convergence rate of the proposed MDE is also justified with the help of the
acceleration rate (AR). We calculated the %AR of MDE, ODE, DERL and MDE1 against
DE andrecorded the results in Tablié( C). From this Table we can clearly see that for
11 test problems the % AR of MDE in comparison to DE is more than 50%. For 7 test
problems the % AR is more than 40% and for 4 test problems it is more than 30%. In
case offy, AR is not recorded because none of the algorithms were able to meet the
desired accuracy criteria. In casefgf AR is not recorded because DE was not able to
solve it successfully. On an average the AR of MDE vs. DE is 46.12%en we
compare ODE agast DE we see that the % AR is less than 10% for all the test problems
with ODE performing worse than DE for 4 test cases. On an average the AR for ODE vs.
DE is 1.15%. The performance of DERL is closest to the performance of MDE with
DERL giving % AR ofmore than 45% in 9 test cases and more than 50% in 1 case. In 9
cases DERL gave an AR of more than 30% and in 4 cases the % AR is more than 20%.
In case of MDE1 and DE, the %AR of MDEL is less than 10% for 10 test cases, while in
2 cases the performanceMDEL1 is worse than DE. FdrO cases the % AR for MDEis
more than 20%.

The successful performance of all the algorithms is summarized in Mafly. Here
we see that on an average, the success rate of the proposed MDE algorithm is 94%, while
for DE, ODE, DERL and MDEL1, the average success rate is 88, 88, 90 and 87 %
respectively. DE and ODE were not able to reach the desired accuracy for fdgatidn
none of the algorithm was able to meet the desired accuracy criteria for fufigction

TABLE IIl (B)
COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD
BENCHMARK PROBLEMS IN TERMS OF NFE. THE BEST RESULTS OBTAINED ARE HIGHLIGHTED
IN BOLDFACE. ACCURACY IS SET AS 18 FOR ALL FUNCTION EXCEPT;, WHERE IT IS 10"
MAXIMUM NFE IS SET AS 10000, n REPRESENTS THE DIMENSION OF THE PROBLER-O
REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO ACHIEVE THE DESIRED ACCURACY
Ave. REPRESENTS AVERAGE

Fun n NFE

DE MDE ODE DERL MDE]
f1 30 10431 4598( 10104 5670 9470(
fa 30 17385 7783( 16557 9389 16024
fa 30 11070 4860( 10240 5970 10140
fa 30 27415 25888 26314 24525 29760
fs 30 -- 19060 -- 25710 --
fe 30 3189( 1485( 30030 1708 2877(
f; 30 13164 7068(Q 13068 8066 13737
fg 30 22685 10106 22203 10880 21098
fo 30 -- -- -- -- --
fio 30 16302 7280(0 16231 8743 14920
fi1 30 10893 48077 10630 5843 9960(
fio 30 9540( 43340 94460 5091 8560(
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fs 30] 10431 46680 10406 5511 9110(
fia 2 5220 3330 5260 3640 5360
f1s 4 1122( 6050 11800 7780 9750
f1o 2 5720 3330 5690 4020 4810
fi7 2 6930 4790 7050 4970 6750
f1o 2 4470 2850 4460 3200 3930
f1o 3 5010 2870 4950 3410 4390
fa0 6 1440( 7050 13560 8825  1310(
f2 4 1199( 6640 11920 75700  1035(
f2 4 1129( 6220 11260 7430 9380
T2 4 1133( 6190 11090 74400  1009(
fa 30 10454 46580 10030 5505 9150(
f2s 2 4160 2640 4350 3190 3840
Ave 74840] 40318 72770 44803] 70861
TABLE Il (C)

COMPARISON OF PROPOSED MDE, MDE1, ODE AND DERL FOR 25 STANDARD BENCHMARK
PROBLEMS AGAINST DE IN TERMS OF AR. THE BESRESULTS OBTAINED ARE HIGHLIGHTED
IN BOLDFACE. ACCURACY IS SET AS 16 FOR ALL FUNCTION EXCEPT f; WHERE IT IS 102
MAXIMUM NFE IS SET AS 10000h, n REPRESENTS THE DIMENSION OF THE PROBLE®:O INfs
AND fq INDICATES THAT AR CANNOT BE CALCULATED FOR THEM Ave. REPRESENTS
AVERAGE

Acceleration Rate (AR)

Fun | MDE vs. DE | ODE vs. DE| DERL vs. DE | MDEL vs. DE
f, |30 | 5592 3.13 45.64 9.21
f, |30 | 5524 4.76 45.99 7.83
f; |30 |561 7.50 46.07 8.40
f, |30 |557 4.01 10.54 -8.55
f |30 |- - - -

f | 30 | 53.44 5.83 46.44 9.78
f, |30 | 46.31 0.73 38.73 -4.35
f | 30 | 55.45 2.12 52.04 6.99
f, |30 | - - - -

fo | 30 | 55.35 0.44 16.37 8.48
fu | 30 | 55.87 2.41 46.36 8.57
f, | 30 | 54.58 0.99 16.64 10.27
fis | 30 | 55.25 0.24 4717 12.66
f | 2 36.21 0.77 30.27 -2.68
fs | 4 46.08 517 30.66 13.10
fs | 2 41.79 0.52 29.72 15.91
f; | 2 30.89 -1.73 28.28 2.60
fs | 2 36.25 0.22 28.41 12.08
fo | 3 1272 1.20 31.94 12.38
f | 6 51.05 5.83 38.72 9.03
fn | 4 4463 0.58 36.86 13.68
. | 4 44.91 0.27 34.19 16.92
f | 4 45.37 2.12 34.33 10.94
f.. | 30 | 55.45 4.06 47.34 12.47
fs | 2 36.54 457 2331 7.69
Ave 46.12 1.51 37.65 8.41

Analysis of resultsb Although on the basis of error and standard deviation no concrete
conclusion can be drawn on the performance of the proposed MDE algorithm but if we
look at other performance criteria we can clearly observe the efficient performance of
MDE. The improverant in NFE taken by ODE, MDE1 and DERL in comparison to DE
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is 2.8%, 5.3% and 40.1% respectively, whereas for MDE this improvement is 46.1%
justifying the effect of synergy. A similar trend can be observed in terms of % AR and
SR. On an average the % AR MDE is 46.12% while for ODE, DERL and MDEL1 it is

1.5, 37.65 and 8.5% respectively in comparison to DE. Further MDE emerges as the most
successful algorithm with an average SR of 94%.

TABLE IIl (D)
COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE ANIERL FOR25 STANDARD
BENCHMARK PROBLEMS IN TERMS OF SR.THE BEST RESULTS OBTAINED ARE HIGHLIGHTED
IN BOLDFACE. ACCURACY IS SET AS 18 FOR ALL FUNCTION EXCEPT, WHERE IT IS 1%
MAXIMUM NFE IS SET AS 10000h, n REPRESENTS THE DIMENSION OF THE PROBLEM.
AVERAGE SR IS RECORDED IN THE LAST ROW.

Fun | n Success Rate (SR)
DE MDE ODE | DERL MDE1
fy 30 |1 1 1 1 1
f 30 |1 1 1 1 1
fs 30 |1 1 1 1 1
fy 30 | 0.36 | 0.75 0.52 0.44 0.52
fs 30 | O 1 0 1 0
f 30 |1 1 1 1 1
f, 30 |1 1 1 1 1
fg 30 | 09 0.88 0.88 0.72 0.76
fo 30 |0 0 0 0 0
fio 30 |1 1 1 1 1
i 30 |1 1 1 1 1
fio 30 |1 1 1 1 1
fi3 30 |1 1 1 1 1
fia 2 1 1 1 1 1
fis 4 1 1 1 1 1
fi6 2 1 1 1 1 1
fi7 2 1 1 1 1 1
fis 2 1 1 1 1 1
fio 3 1 1 1 1 1
fa0 6 0.84 | 0.78 0.62 0.44 0.48
fa1 4 1 1 1 1 1
fa2 4 1 1 1 1 1
fas 4 1 1 1 1 1
foa 30 |1 1 1 1 1
fo5 2 1 1 1 1 1
Ave 0.88 | 0.94 0.88 0.90 0.87
TABLE Il (E)
RESULTS OF FRIEDMAN TESBASED ON ERROR
N Friedman value | df p-value
25 30.384 4 <0.001
df bDegrees of Freedom N - Total No offunctions
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TABLE Il (F)
RANKING OBTAINED THROUGH FRIEDMANOS TEST AND CRITICAL DIFFERENGED) CALCULATED
THROUGHBONNFERRONDUNNOS PROCEDURE

Algorithm Mean Rank
DE 3.82
MDE 2.18
MDE1 3.00
ODE 3.32
DERL 2.68
CDfor" =0.05 1.11714
CDfor" =0.10 1.002206
TABLE IlI (G)
RESULTS OF PAIRWISE COMPARISON BASED ON ERROR
MDE paired ttest Wilcoxon test
Vs. Stat p-value | +ve | -ve | tie | Stat p-valu
DE -1.419] 0.196 | 12 | 0O 13 | -2.803 | 0.005
MDE1 | -0.974| 0.340 | 11 |2 12 | -1.852 | 0.044
ODE -1.147]1 0263 |12 |1 12 | -2.691 | 0.007
DERL | -1.279| 0.181 | 11 | 2 12| -1.852 | 0.064

TABLE Il (H)
RESULTS OF FRIEDMAN TESBASED ON NFE
N Friedman value | df p-value
25 85.849 4 <0.001
df bDegrees of Freedom N - Total No of furctions
TABLE Il (1)

RANKING OBTAINED THROUGH FRIEDMANOS TESAND CRITICAL DIFFERENCE (CD) CALCULATED
THROUGH BONNFERRONDUNNOS PROCEDURE

Algorithm Mean Rank
DE 4.60
MDE 1.12
MDE1 4.00
ODE 3.28
DERL 2.00
CD for" =0.05 1.11714
CD for" =0.10 1.002206
TABLE III (J)
RESULTS OF PAIRWISE COMPARISON BASED OF NFE
MDE paired ttest Wilcoxon test |
Vs. Stat p-valu¢ +ve | -ve tie | Stat p-value
DE -4584 | 0.000( 24 | O 1 -4.286 | 0.000
MDE1 -4581 | 0.000( 24 | O 1 -4.286 | 0.000
ODE -4.472 | 0.000( 24 | O 1 -4.286 | 0.000
DERL -2.438 | 0.023| 23 | 1 1 -3.686 | 0.002

B. Statistical Analysis

Error values included in Table I[IA) allow us to carry out a rigorous statistical study in
order to check whether the results of the algorithms are rather significant for considering
them different in terms of quality on approximation of continuous fanst Our study
will be focused on the algorithm that had the lowest average error rate in the comparison,
MDE. We sstudiedthe behaviour of this algorithm with respect to the remaining ones, and
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determine if the results it offeed are better than the onedffered by the rest of
algorithms, computing thp-valueon each comparison. Tablié (E) shows the result of
applying FriedmanOs tests in order to see whether there are global differences in the
results. Given that thp-value of Friedman test is lower than the level of significance
considered! = 0.05, there are significant differences among the observed results
Attending to these results, posthoc statistical analysids doneto detect concrete
differences among algorithmBirst of all, we emplogd BonferroniDunnOs test to detect
significant differences for the control algorithMDE. Table lll (F) summarizes the
ranking obtained by FriedmanOs test and the critical differ@i@}p of Bonferroni
DunnOs procedurén Figure 3(a), BonferroniDunnOs graphidlustrates difference
among rankings obtained for each algorithm. is,tve draw a horizontal cut line which
represents the threshold for the best performing algoritheone with the lowest
ranking bar, in order to caider it better than other algoritlsmA cut line is drawn for
each level of significance considered in the study at height equal to the sum of the
ranking of the control algorithm and the corresponding Critical Difference computed by
the BonferroniDunn mnethod. The barswhich exceed this line arassociated to an
algorithm with worse performance than the control algorithm. The application of
BonferroniDunnOs test informs us of the following significant differences M2IE as
control algorithm:

¥MDE is better thalDE andODE with ! = 0.05 and! = 0.10 /4 algorithms).

Until now, we used procedures for performing multiple comparisons in order to check
the behaviour of the algorithms. We then compai&E with the rest othe algorithms
pair wise usingWilcoxon and paired-test. The corresponding results are givenTiable
I (G). It displays the statistics, p-value and number of +ve rankévhere control
algorithm performed better than comparing algorithm)e ranks (where control
algorithm performedworse than comparing algorithmand tie (both algorithms
performed equivalently)

From this Table we see that in case of DE, for 12 problems MDE performed better
than it, while for 13 cases both the algorithms performed similarly. In case of MDEZ1, for
11 test cases MDE performed better than it while for 2 cases MDE1 performed better
than MDE. In the remaining two cases both algorithms performed equivalently. MDE
outperformed ODE in 12 cases and ODE outperformed MDE in 1 case. In the remaining
12 cases bothlgorithms gave a similar performance. MDE performed better than DERL
in 11 cases, in 12 cases there was a tie i.e. both algorithms performed equivalently while
in 2 cases DERL outperformed MDE. In an interesting observation we see that according
to tted there is no significant difference between MDE and other algorithms but
according to Vilcoxon test we see that although there is no difference between MDE and
DERL, butthere is a significant difference between MDE and other algorithms.

Following theprocedure given above we did a similar analysis for NFE given in Table
[ll (B). The statistical results based on it are summarized in Tablés)4l1l (J). From
these Tables and from the graphical illustration given in Figure &()see that in an
overall comparison MDE and DERL are at par with each other while the remaining
algorithms perform worse than MDE. However, when we perform a pair wise
comparison for which the results are given in Table(J), we see that there is a
significant difference tteveen MDE and other algorithms.

The performance of MDE and other algorithms in terms of NFE is also shown with the
help of boxplot given in Figure3(c).
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Analysis ofresults b on the basis of error once again we cannot make a concrete
judgment about thperformance of MDE. But if we observeFR we can see that MDE
performs better than other algorithms.

C. Influence of dimensionality

In order to investigate the effect of dimensionality on the pediocsthe proposed
MDE algortihm we considered the scalable problems and varied their dimensiih as
(=15) and 2 (=60). The corresp@ssociateding results in terms of average NFE and
Success Rate are reported in Talle. For problems of dimension 15, MDE
outperfromed DE by a significant difference for all the functions ex&ggdbr which
neither of the algorithms were able to reach the desired accuracy and were therefore
terminated when the maximum NFE was reached. The average NFE taken by DE for 15
dimersions problem is 61315 which is almost twice the average NFE taken by MDE
which is 30588.75. further the average success rate for DE is 0.80 only whereas for MDE
the average success rate is 0.90.

When we increased the dimension to 60, the performance édifiiter deteriorated in
comparison to MDE. DE was not able to solve problénasdfs for dimension 60 under
the given parameter settings. Once again neither of the algorithms were able to solve
function fg. The average NFE taken by DE comes out to B128.1 while the NFE
taken by MDE comes out to be 162934.5, which is half the NFE taken by DE. The
average success rate of DE and MDE are 0.74 and 0.83 respectively.

Analyisis of resuls Bfor smaller dimension (15) as well as for larger dimenséi) \ye see
that n terms of NFE, MDE shows an improvement of around 50% for problems of dimension
both15and60. The SR of MDE is 10% better than the SR of DE for problems of dimension
15 and is 9% better than DE for problems of dimension 60.

D. Influence of varyigthe population sizeNP)

In order to observe the effect of varying population size on the proposed MDE
algortihm, we considered two different population si&&$2 (=50) and2NP (=200) and
recorded the NFE and SR for DE and MDE algorithms. The corresponding results are
given in TableV. For NP=100, the average NFE for DE and MDE was 74840.43 and
40318.7 respectively, which reduced to 29008.14 and 16580.91 respectively when the
population size was reduced MP=50. However the success rate also reduced from 0.88
to 0.85for DE andfrom 0.94 to 0.86 for MDE. Likewise when we increased the
population size to 200, the success rate incresed to 0.90 and 0.95 at the cost of higher
NFE, which shot up to 174273.3 (for DE) and 101195.3 (for MDE).

Anaysis of Resultsb for smaller population sizeNP=50) both DE and MDE
performed reasonably well in terms of NFE with MDE being almost 50% faster than DE.
However the success rate deteriorated3#y and8% for DE and MDErepsectively in
comparison to the success rate for population size 100. For larger populsfs200),
the SR improve by% and 1% respectivelyfor DE and MDEat the cost ofnore than
50%increase in NFEor both DE and MDEThisis an expected outcome as most of the
population based search techniques are sensitive to the population size. This also shows
thatNP=100 is quite effecient for solving problems up to dimension 30.
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TABLE IV
INFLUENCE OF DIMENSIONALITY DCOMPARISON OF MDE WITH DE IN TERM OF NFEAND SR
FOR SCALABLE PROBLEMS. THE DIMENSIONS ARE TAKEN AS n/2(=15) AND 2n (=60). THE BEST
RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. WHEN NO RESULT IS HIGHLIGHTED IT
INDICATES THAT ALL THE ALGORITHMS HAVE SAME RESULTS. ACCURACY IS SET AS 18
FOR ALL FUNCTION EXCEPT NOISY; FUNCTION WHERE IT IS 16°. MAXIMUM NFE IS SET AS
10000*n. Ave REPRESENTS AVERAGE AND ©® REPRESENTS THAT THE ALGORITHM WAS NOT
ABLE TO ACHIEVE THE DESIRED ACCURACY.

NFE Success RafSR)
Fun n=15 n=60 n=15 n=60
DE MDE DE MDE DE MDE DE MDE
f, 49050 23250 192400 85800 1 1 1 1
f, 80440 39350 305120 134890 1 1 1 1
f, 52900 24100 215700 96800 1 1 1 1
f, 123210 60400 - 528000 0.65 1 0 0.52
fs - 62550 - 546000 0 1 0 0.87
2 14310 7040 57000 26990 1 1 1 1
f, 43740 29580 451600 432000 1 1 1 1
s 57960 40155 594000 516000 0.92 0.95 0.9 0.71
f, - - - - 0 0 0 0
fio 77990 37750 288800 125900 1 1 1 1
fie 98700 39200 184600 85500 0.57 0.65 0.47 0.5
fio 44640 21450 165000 90400 1 1 1 1
fis 47460 23240 191400 102000 1 1 1 1
fe 45380 21550 208100 96000 1 1 1 1
Ave 61315 30588.75 259429.1 162934.5| 0.80 0.90 0.74 0.83
TABLE V

INFLUENCE OF VARYING POPULATION SIZE®COMPARISON OF MDE WITH DE IN TERMS OF
NFE AND SR FOR ALL THE 25 PROBLEMS. THE POPUALTION SIZES ARE TAKEN N8/2 (=50)
AND 2NP (=200).THE BEST RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. ACCURACY
IS SET AS 10° FOR ALL FUNCTIONf; WHERE IT IS 10>, MAXIMUM NFE IS SET AS 1000000Ave.

REPRESENTS AVERAGE ANDD -CREPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO
ACHIEVE THE DESIRED ACCURACY

NFE Success Rate (SR)
Fun n NP=50 NP=200 NP =50 NP =200
DE MDE DE MDE DE MDE DE MDE
fi 30 40310 19770 286200 128800 1 1 1 1
fp 30 61460 29170 397000 223940 1 1 1 1
fa 30 42350 21445 352000 138000 1 1 1 1
fa 30 - - 897000 447920 0 0 0.65 0.89
fs 30 - 363000 - 385200 0 1 0 1
fe 30 12320 6165 87000 39800 1 1 1 1
fz 30 70455 65195 260000 245600 1 1 1 1
fg 30 96650 75362 335855 296244 0.65 0.52 0.93 0.96
fo 30 - - - - 0 0 0 0
fio 30 62650 32450 385282 202600 1 1 1 1
fi1 30 41450 20350 297000 133120 0.87 0.70 1 1
fio 30 42177 20438 208321 118560 1 0.9 1 1
fia 30 65218 27255 186323 123600 1 0.9 1 1
fia 2 2572 1690 6521 5820 1 1 1 1
fis 4 6721 3450 18723 11440 1 1 1 1
fie 2 2577 1540 8723 6740 1 1 1 1
fiz 2 3572 2000 13272 9660 1 1 1 1
fis 2 2466 1405 9832 5320 1 1 1 1
fio 3 2943 1485 8734 5560 1 1 1 1
fa0 6 6823 3350 19838 14688 0.72 0.43 0.89 0.93
fo1 4 6282 3050 18923 12900 1 1 1 1
fa2 4 7132 2970 20223 12120 1 1 1 1
fas 4 6980 3005 19890 11920 1 1 1 1
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fou 30 52287 21840 165328 128000 1 1 1 1

fos 2 2784 1395 6299 5140 1 1 1 1

Ave 29008.14 16580.91 174273.3 101195.3 0.85 0.86 0.90 | 0.95
TABLE VI

THE RESULTS ARE TABULATED FOR NUMBER OF FUNCTION EVALUATIONS (NFE) AND
SUCCESS RATE (SRAve. REPRESENTS AVERAGE AN -OREPRESENTS THAT THE
ALGORITHM WAS NOT ABLE TO ACHIEVE THE DESIRED ACCURACY

EFFECT OF JUMPING ON PROPOSED MDE ALGORITHM WITH JUMPING RATES AS 0.1 AND 0.3.

NFE SR
Fun : ) : MDEj0. | MDEj0
DE MDE MDE]0.3 MDEJ0.1 DE MDE 10 o
T, 30 104310 | 45980 48870 48270 1 1 1 1
f, 30 173850 77830 80960 78540 1 1 1 1
f, 30 110700 | 48600 53400 50700 1 1 1 1
f, 30 274150 | 258886 267000 261000 036 | 0.5 0.32 0.46
f, 30 - 190600 248300 212000 0 1 1 1
f, 30 31890 14850 15540 14670 1 1 1 1
f, 30 131640 70680 82000 75420 1 1 1 1
fy 30 226850 | 101067 — - 0.9 0.88 0 0
f, 30 - - - - 0 0 0 0
fuo 30 163020 72800 76670 73200 1 1 1 1
fu 30 108930 | 48077 52383 49444 1 1 0.62 0.84
fis 30 95400 43340 43811 43280 1 1 0.88 1
fis 30 104310 | 46680 48744 46920 1 1 0.92 1
fre 2 5220 3330 3265 3290 1 1 1 1
iy 4 11220 6050 6234 6540 1 1 1 1
fus 2 5720 3330 3243 3510 1 1 1 1
fur 2 6930 4790 4840 4520 1 1 1 1
fis 2 4470 2850 2083 3070 1 1 1 1
fio 3 5010 2870 3045 3560 1 1 1 1
fao 6 14400 7050 7143 7620 084 | 0.8 0.44 052
A 4 11990 6640 6538 6930 1 1 1 1
fo 4 11290 6220 6458 6510 1 1 1 1
fas 4 11330 6190 6245 6350 1 1 1 1
foe 30 104540 | 46580 48300 47700 1 1 1 1
fas 2 4160 2640 6560 2960 1 1 1 1
Ave 679309 | 375574 397378 38363.8 0.88 0.94 0.85 0.87

TABLE VII

COMPARISON OF PROPOSED MDE ALGORITHM WITH DE AND OOEO] ON 7
NONTRADITIONAL SHIFTED FUNCTIONS IN TERMS OF ERROR (BEST MEDIAN, WORST AND
MEAN) AND STANDARD DEVIATION (Std). DIMENSION (n) OF ALL THE PROBLEMS IS TAKEN AS
500. MAXIMUM NFE IS SET AS 5000r

Problem | n Error value DE ODE [5Q] MDE
Best 2, 636.54 15.66 3.48
Median 3,181.45 36.61 5.32
F1 500 | worst 4, 328.80 292.65 7.57
Mean 3, 266.24 80.17 4.86
Std 409.68 79.24 4.34
500 | Best 79.74 3.60 19.82
F Median 82.39 4.86 11.88
2 Worst 85.92 11.91 12.26
Mean 82.93 5.78 11.87
Std 2.09 2.37 1.93
500 | Best 76,615, 772.08 39, 718.90 727, 996.00
F Median 119, 733, 049.20 | 137, 279.03 731, 546.21
8 Worst 169, 316, 779.50 | 407, 661.64 732, 763.93
Mean 123, 184, 755.70 | 154, 306.34 730, 473.25
Std 29, 956, 737.58 | 114, 000.53 116,325.43
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500 | Best 5, 209.99 2,543.51 1, 155.15
Median 5, 324.57 4, 279.56 3, 243.87
Fa Worst 5, 388.24 6, 003.94 4, 478.90
Mean 5, 332.59 4,216.34 4,212.76
Std 43.82 1,017.94 58.60
500 | Best 24.29 1.25 0.31
E Median 24.71 1.55 0.87
5 Worst 27.59 2.13 0.96
Mean 25.16 1.75 0.56
Std 1.10 0.37 0.05
500 | Best 4.66 2.49 1.18
E Median 4.97 4.12 1.47
6 Worst 5.15 6.73 1.56
Mean 4.94 4.51 1.25
Std 0.17 1.44 0.07
500 | Best -3683.07 -3957.85 -3992.76
E Median -3575.13 -3834.07 -3836.65
7 Worst -3565.73 -3830.36 -3833.21
Mean -3593.75 -3851.82 -3863.59
Std 32.74 38.80 29.31
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E. Effect of jumping on the proposed MDE algorithm

In [14], the authors proposed the concept of jumping in their algorithm ODE. We
applied the same concept on the proposed MDE algorithm, taking jumping rates as 0.1
and 0.3 and recorded the results in terms of NFE and SR in Vableom this Table it
can be seen that by dping the concept of jumpingthe modified MDE algorithms
(MDE;j0.3 and MDEj0.1) were not able to solve functfgiesided,. Also, the average
NFE increased and the SR deteriorated (0.85 for MDEj0.3 and 0.872 for MDE]j0.1)

Analysis of result:The idea of jumping is not beneficial for the MDE algorithm. The
success rate for MDE which is 0.94 came down to 0.85 when jumping rate was kept as
0.3. This shows a deterioration of around 10%. When jumping was reduced to 0.1, there
was an improvement in the average success rate (0.87) but still it was 7% lesser than the
SR of MDE algorithm. Going by these results we can say that the idea of jumping is not
favorable for MDE algorithm.

F. Numerical resultgor nontraditional benchmark pblems

The performance of MDE is also validated on a set of 7 nontraditional benchmark
functions and the corresponding numerical results are reported in \THbie terms of
best, median, worst and mean error and standard deviBtimm these results wsee that
MDE outperforms basic DE for all the test problems in terms of error and standard
deviation by a significant difference. In comparison to OBH),[we see that MDE
outperformed it in 5 out of 7 cases in terms of error as well as standard deViatibe
remaining two cases ODRAhnamayan and Wang, 2Q@&rformed better than MDE.
Analysis of Resultsb MDE performed better than DE for all the test cases with an
improvement of up to 99% in the best function value for F1, F3 and F5 and an
improvement up to 75% for F2, F4 and F6. For the last function F7, the improvement is
around 8%. In case of ODE, for the 5 function in which MDE gave a better performance,
the improvement in F1 and F5 is more than 75%. For F4 and F6, the improvement is
more than50% and for F7, the improvement is around 1%. These results show the
efficiency of MDE for solving large scale problems.

G. Numerical results of real life problems

The numerical results of three real life problems are recorded in Télle@), V|
(B) andVIIl (C). In TableVIll (A), MDE is compared with DE and DEGL for frequency
modulation problem in terms of average fitness function value and standard deviation
(Std.). It can be clearly observed from the Table that MDE outperforms both DE and
DEGL by a significant difference. Result for transistor modeling problem is given in
TableVIll (B). Here MDE is compared with DE in terms objective function value which
is clealy better for MDE. In Table/I1l (C) results for spread spectrum radar poly phase
code design problem are given in terms of average fitness function value and standard
deviation. Here MDE is compared with DE and DEGL. The numerical results taken for
dimersions 19 and 20 show that for 19 variables problem, MDE outperformed DE and
DEGL in terms of average fitness function value and for 20 dimensions problem MDE
performed better than both the other algorithms in terms of average fitness function value
and stadard deviation.

Analysis of resultsb from these results we can say that the proposed MDE is
competent for solving the real life problems.
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AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BESDFRUN SOLUTIONS FOR

MODULATOR SYNTHESIS PROBLEM. EACH ALGORITHM WAS RUN FOR 10IFEs

TABLE VIl (A)

50 RUNS ON THEFREQUENCY

AVERAGE AND PARAMETER VALUES OF THE BESTOF-RUN SOLUTIONS FOR 50 RUN®VER THE
TRANSISTOR MODELING PROBLEM EACH ALGORITHM WAS RUN UP TO#%10° NFEs

AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BESDFRUN SOLUTIONS

SPECTRUM RADAR POLYPHASE CODE DESIGN PROBLEM (NUMBER OF DIMENSIONS ARE n=19

4.70081e04 1.24148e28 4.81520€09
(3.434%-05) (7.328%-31) (6.263%-09)
TABLE VIII(B)

DE MDE
x1 0.901340 0.901337
x2 0.891164 0.891043
X3 3.87857 3.87943
x4 3.94653 3.94663
x5 5.32623 5.32509
X6 10.6267 10.6171
X7 0.0 0.0
X8 1.08924 1.08832
X9 0.705675 0.706734

f(X) 0.0937829 0.0643636

Table VIII(C)

FOR 50 RUNS OVER THE SPREAD

AND n=20). FOR ALLCASES
EACH ALGORITHM WAS RUN UP TO %t 10° NFEs

Dim DE MDE DEGL[64]

19 3.80121e01 2.50000€01 7.44390€01
(2.3434-02) (3.0993:-03) (5.840@-04)

20 4.57939€01 2.50483e01 8.03040€01
(4.3874-03) (1.329@-04) (2.730@-03)

8. STATEOFTHE ART DEALGORITHMS USEDFORCOMPARISON

In this section we give a brief description of other state of the art DE algorithms used in
this paper. These are recently proposed algorithms and have reportedly given good
performance on a set of various benchmark problems.

SaDE - SaDE Qin et al., 200p was proposed by Qin and Suganthan
simultaneously implement two mutation strategies ODE/rand/10 and ODEtfgurrent
best/1.0 It adapts the probability of generating offspring by either strategy based on their
success ratios in the past 50 generations. It is believed that this adaptatiedure can
gradually evolve the most suitable mutation strategy at different learning stages for the
problem under consideratiom SaDE, the mutation factors are independently generated
at each generation according to a normal distribution with meégrstandard deviation
0.3, and truncated to the interval (0, 2]. To speed up the convergence of SaDE, the
authors further apd a local search procedure (quéwton method) to some good
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individuals after 200 generation§aDE has been applied to botlnstrained and
unconstrained problems

jDE - Brestet al.[Brest et al., 2007 [Brest et al., 2006poroposed a new adaptive DE,
jDE, based on the classic DE/rand/1/bin. Similar to other schemes, JjDE fixes the
population size during the optimization widdapting the control parametérsand Cr
associated with each individual. It is believed that better parameter values tend to
generate individuals which are more likely to survive and thus these values should be
propagated to the next generation. Experital results suggest that jDE performs
remarkably better than the classic DE/rand/1/lEind many other adaptive and non
adaptive algorithms.

JADE bwas proposed by Zhang and Sanderstimapg and SandersonQ@. They
implemented a new mutation strateggmed ODE/currett-pbestO with an optional
external archive and updated control parameters in an adaptive manner. Their strategy is
a generalization of the classic ODE/curtertest,O while the optional archive operation
utilizes historical data to pwide information of progress direction. The parameter
adaptation automatically updates the control parameters to appropriate values and avoids
a userOs prior knowledge of the relationship between the parameter settings and the
characteristics of optimizatn problems. In JADE, the crossover probabilly and
scaling factorF are generated independently for each individual using normal and
Cauchy distribution. They validated their algorithm on a set of 20 benchmark problems
and compared it with other adajg and non adaptive algorithms.

A. Comparison of MDE with other state of the art algorithms

The proposed MDE is compared with three other state of the art DE algorithms given
in the previous section on the basisawkrage fitnessstandard deviatiorS{d.), number
of function evaluations and success r@&®) Herewe fixed the numbeof generations
as given in TabldX (A). The remaining parameters are kept same as discussed in the
earlier sectiorV. From TablelX (A) which gives the results on the basisfiafessand
standard deviation we see that JADE performed better than MDE and other algorithms in
5 caseswhile MDE gave the best performance in 8 cases. In the remaining cases all the
algorithms performed in a similar manner. On the basis of MEEesllts are given in
Table 1X (B). From this Tableve see that JADE took lesser NFE than other algorithms in
8 cases, while MDE outperformed other algorithms in 5 c&¥esn average JADE took
38012 NFE for solving 25 test problems while MDE took 46580 NFEchvis slightly
worse than JADE. However, in comparison to jDE and SaDE which took on an average
82012 and 71365 NFE respectively, the performance of MDE is quite good.

The success rate of JADE comes out to be 97% while for MDE the success rate comes
outto be 96% for SaDE and jDE, the success rates are 94% each.

We also compared the algorithms statisticallythe basis of NFEor which the results
are given in TabletX(C)-IX(E). Once again we followed the same procedure given in
Section VIIB. An overall comparison adlgorithmsis given in TablelX (C) and I1X(D).
Table IX(C) shows that there is a significant difference between the algoriBroms
TablelX (D) we seeghat MDE and JADE are at par with each other while the remaining
two algorithms jDE and SaDE do not perform as well I®E. This is illustrated
graphically in Figure 4(a). Pairwise comparison of M@Eh JADE, jDE and SaDEs
summarized in Table IX(E). From this Table we see that, though the paé&sdshows
that there is no sigficant difference between MDE and other algorithms, Wilcoxon test
shows that there B significant difference between MDE and jDE and SaDE, while there
is no difference between MDE and JADE.
This result can also be verifigtbm Figure4(b) which gives he box plot of algorithms
on the basis of NFE.

Analysis of resultsbOn the basis ofithesswe cannot make a concrete judgment on
the working of MDE. On the basis of success rate we see that JADE performs marginally
better(1%) than MDE.On the basis oNFE, we see that MDE on an average took more
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NFE than JADE but its performance waggnificantly better than jDE and SaDE.
However, statistically we see that MDE and JADE are at par with each other on the basis
of NFE.
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TABLE IX (A)

COMPARISON OF MDE WITH jDE, JADE, AND S2E IN TERMS OF FITNESS FUNCTION VALUE.
Std. REPRESENTS THE STANDARD DEVIATION ANDI REPRESENTS THE DIMENSION OF THE
PROBLEMS.FOR ALL CASES EACH ALGORITHM IS RUN UP TO MXIMUMt OF GENERATIONS.

Fitness(Std)
Fun n #Gen
iDE JADE SaDE MDE
f, 30 1500 2.34343e28 1.73443e60 3.54533e20 2.74298€36
1.92383e28 7.34344e60 5.79432€20 3.94901€36
f, 30 2000 3.09343e23 2.38353e25 1.02398e14 1.10654€24
8.38772e24 8.47876€25 1.83421€l5 8.28990e25
f, 30 5000 3.39041e14 4.44584e61 9.04322€37 4.81002e131
3.82921e14 1.32743e60 3.44302e37 0
f, 30 5000 0 8.43245e24 6.49202e11 5.92984el1
0 4.20037e23 1.63430€e10 8.36854€10
0 8.94840e02 2.34993e01 0
fs 30 20000 0 5.97326€01 2.33498e01 0
0 0 0 0
fs 30 1500 0 0 0 0
f, 30 3000 2.31545€03 8.54564€04 3.58832e03 2.05093e04
7.38443e04 2.32534e04 1.62992e03 1.04551€03
f\ 30 9000 -12569.5 -12569.5 -12569.5 -12569.5
8.00132e12 0 8.43901€08 1.09766€10
30 0 0 0 8.95493e+00
fo 5000 0 0 0 1.59359e+01
fi 30 1500 7.09431el5 5.65784€l5 7.38286€e14 4.05954€15
1.72928e15 0 3.48321el4 0
iy 30 | 2000 0 0 0 0
fo 30 1500 5.93708€30 1.06754€32 2.43748e19 1.35993e35
2.32384€30 3.43503e48 0 0
fi 30 1500 6.90221€29 4.65656€32 2.83043e19 1.29390€32
3.84204€29 4.14394e48 0 0
o 2 100 0.998004 0.998004 0.998004 0.998004
1.90023e16 0.998004 1.32943€16 1.21077€¢16
fs 4 4000 4.29044€04 6.78786€05 8.43984€04 3.07102€05
3.28494€04 3.07102e04 4.54989€08 9.71256€09
f 2 100 -1.03163 -1.03163 -1.03163 -1.03163
8.43843e12 -1.03163 1.48430€e16 2.22875€e16
f 2 100 0.397887 0.397887 0.397887 0.397887
4.43492e08 0.397887 0 0
fi 2 100 3.0 3.0 3.0 3.0
1.98237e15 3.0 2.43493€e16 1.61278€16
fio 3 100 -3.8623 -3.8626 -3.8623 -3.8623
9.32384€15 7.76755e14 7.34399¢15 4.44089¢e16
fo 6 100 -3.2863 -3.2986 -3.3182 -3.2807
6.34934€06 5.75433e05 6.34348€03 2.39493e03
e 4 100 -10.1532 -10.1532 -10.1532 -10.1532
3.34321€06 4.88743el3 4.23484€15 1.77532¢e15
e 4 100 -10.4029 -10.4029 -10.4029 -10.4029
5.25234€07 8.57584e13 2.43438e15 1.25879¢15
fe 4 100 -10.5364 -10.5364 -10.5364 -10.5364
5.02913€06 8.76765el1 7.43483el4 1.94865€15
b 30 10000 3.49941651 6.67607e61 7.38393658 1.47748€76
7.34301653 8.57008e63 3.45843e60 5.93376€77
w| 2 Jwo | 2 . . .
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TABLE IX (B)

COMPARISON OF MDE WITH PE, JADE,AND S&DE IN TERMS OF FUNCTIONEVALU ATION.
MAXIMUM NFE IS TAKEN AS 10000"n. WHEREn DENOTE THE DIMENSION OF THE PROBLEM
Ave. REPRESENTS AVERAGE AND @&REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO

ACHIEVE THE DESIRED ACCURACY10% FOR ALL FUNCTIONS EXCEPT, FOR WHICH IT IS 10>

Fun n NFE SR
JADE MDE DE SaDE JADE MDE jDE SaDE
fy 30 29900 45980 60100 73490 1 1 1 1
fo 30 52550 77830 83220 118932 1 1 1 1
fa 30 94840 48600 339399 181673 1 1 1 1
fy 30 170890 258886 300650 290380 0.92 1 0.8 0.86
fs 30 151000 190600 575990 278890 0.9 1 0.6 0.29
fe 30 11560 14850 24860 28410 1 1 1 1
fz 30 30000 70680 98000 128764 1 1 1 1
fg 30 130480 101067 88940 121830 1 1 0.68 0.81
fg 30 131000 -- 118630 170765 1 0 1 1
fio 30 45610 72800 90620 119090 1 1 1 1
fi 30 34000 48077 64270 80688 1 1 1 1
fio 30 26950 43340 54310 72346 1 1 1 1
fis 30 30988 46680 61287 73432 1 1 1 1
fia 2 3455 3330 3578 3672 1 1 1 1
fis 4 6532 6050 6648 6438 1 1 1 1
fi6 2 3310 3330 3298 3320 1 1 1 1
fi7 2 4520 4790 4872 4810 1 1 1 1
fig 2 3080 2850 3389 3010 1 1 1 1
fio 3 2990 2870 3154 3080 1 1 1 1
fa0 6 7000 7050 7410 7832 0.47 0.95 0.41 0.44
fo1 4 6745 6640 6829 6770 1 1 1 1
foo 4 6389 6220 6194 6395 1 1 1 1
fos 4 6090 6190 6530 6672 1 1 1 1
foa 30 50380 46580 71290 89372 1 1 1 1
fos 2 3050 2640 3456 3480 1 1 1 1
Ave 38012.9 46580.4 82012.2 71365.7 0.97 0.96 0.94 0.94
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Table IX(C)
RESULTS OF FRIEDMAN TESBASED ON NFE
N Friedman value df p-value
25 34.776 3 <0.001
df bDegrees of Freedom N - Total No offunctions
Table IX(D)

RANKING OBTAINED THROUGHFRIEDMANOS TEST AND CRITICAL DIFFERENCE (CD)
CALCULATED THROUGH BONNFERROMNDUNNOS PROCEDURE

Algorithm Mean Rank
JADE 1.68
MDE 1.84
iDE 3.00
SaDE 3.84
CD for"=0.05 0.874165
CD for"=0. 01 0.777036
Table IX(E)
RESULTS OF PAIRWISE COMPARISON BASEOF NFE
Ao paired ttest Wilcoxon test
g0 Stat Sig. +ve | -ve | tie Stat Sig.
JADE | 1.852 | 0.076 10 15 0 -1.493 | 0.135
jDE -1.304 | 0.205 | 21 4 0 -3.269 | 0.001
SaDE | -2.092 | 0.047 | 23 2 0 -3.700 | 0.000
\
%"(
CD=0.874165 ! =0.05- - - -
%7 CD=0.777036 !=0.10 ........
&"( A
<
g -
) )u( J--"--"-"""—-""—""———— = B — — — — 2 — — —
g
] "$%
5 ) &"$%
>
I 1 &
' I"#$ "$%
m(
*+,- /,- 01,-
\_ Control algorithm: JADE )
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Figure 4(a)BonferroniDunnOs graphic corresponding to NFE
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Figure 4(b) Boxplot corresponding to the average NFE

9. CONCLUSIONS

In the present study wegsenéd a simple and efficient variant of DE, callddified
Differential Evolution MDE). The proposed MDE is a fusion of three schemes;
opposition based learning for generating the initial population, tournament best method
for mutation and one population DE structure. The parent algorithms (ODE, DERL and
MDEZ1) using these schemgslividudly have reportedly given very good performance

While the OBL helps in proving an efficient start to the DE algorithm, the use of
tournament best base vector induces a localized effect in the search procedure. Both these
features help in enhancing ttexploratory and exploitation capabilities of the DE
algorithm which in turn hekpin preventing premature convergence. The third feature
which is the use of a singfgpulationDE structure (in contrast to the two set structure
used in basic DE) helps iadterconvergence

As expected, these schemes when combined together produce a synergized effect
which was better than any of the scheme used separately.

The performance of the proposed MDE algorithm is investigated on a set of traditional
benchmark prdlems, nontraditional benchmark problems and real life problems. Its
performance is compared with DE and its parent algorithms ODE, MDE1 and DERL.

Numerical results show that on the basis of error all the algorithms performrecomo
less in a similar manneHowever,on the basis of NFE, %AR and SR we can clearly see
that the combined effect of ODE, DERL and MDE1 in MDE makes it supaabonly
to DE but also to its parent algorithms.

These results are also validated with the help of statistical anagisg an overall and
pairwise comparison of algorithms

MDE is further comparedwith JADE, SaDE and jDEAlthough these algorithms are
adaptive in nature and their comparison with MDE may not be completely justified but
these are some of the recent vatsaof DE and have given good performance in
comparison to both adaptive and nonadaptive algoritikhemerical resultsusing
standard performance measuséswed that JADEperformed better thaMDE in terms
of NFE, though the performance of MDE was muctidsehan jDE and SaDE. Statistical
analysis however showed that JADE and MDEainear with each other
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The objective of this study is not to defeat DE or any of its variants but is to present an
algorithm which is simple to understand and easy to appfysing together some of the
efficient schemes available in literatutéowever, claiming that MDE will outperform
every other variant of DE for every optimization problem, with any degree of complexity,
does not sound justified. Theere several othewariants which may be successfully
combined to produce an algorithm which is better than the proposed MDE. Even the
performance of many existing versions of DE can be improved further by judicious
tuning of parameters alone.

The only case where MDE wastrable to perform successfully was functfgnThis
indicates that some further fine tuning is needed in MDE so that it can solve all types of
problems.

At this stage the conclusion that can be drawn from the present study is that the
proposed MDE versio can serve as an attractive alternative for a wide range of
optimization problems. The paper can be extended in several directions. Fine tuning of
parameters for MDE can be replaced with some suitable adaptive technique. Effects of
adding some local sedre¢echnique can also be observed.
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f15:
i a b
1] 0.195 0.2
2 0.194 0.5
3 0.173 1
4 0.16Q 2
s 0.084 4
q 0.062 6
1 0.045 8
g 0.034 10
9 0.032 12
1 0.023 14
1 0.024 16
flg:
G - El - B
=1 2 3 =1 2 3
1 3 10 3( 0.3689 0.11700.2673
1.9 1 10 3 0.4699 0.4387 0.747
3 3 10 3( 0.1091 0.8732 0.554
4 3.4 1 10 3 0.3815 0.5743 0.88]
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fz]_, f22 andfzg:

i a; j=1E4 [

il 4 4 4 4 0.1

2 1 1 1 0.4

3 8| 8 8 0.4

4 6 6 (i 6 0.4

5 3| 7 7 0.4

g 2 9 ] 9 0.4

1 5 5 3 0.9

g 8| 1 1 0.7

9 6 2 (i 2 0.5

1 7 3.4 1 3.4 0.5

fa0: _ _

i Cij ajj j:1,E6 Pij j= 1,E,6
jl 1 1 3 1] 3. 1.7 8 0.131]] 0.169 0.556 0.0124 0.828 0.588
2 1. .0 10 1] 0. 8 14 0.232 0.413 0.830 0.3734 0.1004 0.999
3 3 3 3.9 1. 1 17| 8 0.234 0.141] 0.352 0.288 0.304] 0.665
4 3. 1 8 .0 1 0.1 14 0.404 0.882 0.873 0.574 0.109] 0.038
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