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Abstract
Probing tools are widely used to discover system information. Once the information is known, attackers can launch computer attacks against the

vulnerable services running on the system. Even though current computer systems are protected against known attacks by implementing a number

of access restriction policies, protection against novel attacks still remains as an elusive goal for the researchers. Attackers defeat current protection

and detection mechanisms by exploiting unknown weakness and bugs in system and application software. Stealthy and low profile probes that

include only a few carefully crafted packets over an extended period of time are used to delude firewalls and intrusion detection systems (IDS).

Building effective IDSs, unfortunately, has remained an elusive goal owing to the great technical challenges involved and applied AI techniques

are increasingly being utilized in attempts to overcome the difficulties. This paper presents computational intelligent agents-based approach to

detect computer probes at the originating host. We also investigate and compare the performance of different classifiers used for detecting probes,

with respect to the data collected on a real network that includes a variety of simulated probe attacks and the normal activity.

Through a variety of experiments and analysis, it is found that with appropriately chosen network features computer probes can be detected in

real time or near real time at the originating host. Using the detection information, an effective response mechanism can be implemented at the

boundary controllers.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Intrusion detection is a problem of great significance to

protecting information systems security, especially in view of

the worldwide increasing incidents of cyber attacks on the

critical infrastructures. Since the ability of an IDS to classify a

large variety of intrusions in real time or in near real time with

accurate results is important, we will consider performance

measures in critical aspects like training and testing times;

scalability; and classification accuracy.

One of the main problems with IDSs is the overhead, which

can become unacceptably high. To analyze system logs, the

operating system must keep information regarding all the actions

performed, which invariably results in huge amounts of data,

requiring disk space and CPU resource. Next, the logs must be

processed and converted into a manageable format and then
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compared with the set of recognized misuse and attack patterns to

identify possible security violations. Further, the stored patterns

need be continually updated, which would normally involve

human expertise. Constructing probing signatures is a bit more

complex as the attackers use carefully crafted packets over a

period of time that appear to be like normal network traffic.

Traditional port scan detectors look for packets coming from

several IP addresses with combination of different ports with in a

defined time to a target machine, which involves computation to

analyze packet headers to search for signatures. In this paper, we

present a novel approach of detecting probes at the originating

machine using computational intelligent agent-based techniques

that reduces the computation at the server and efficiently deal

with distributed attacks.

Several artificial intelligence techniques have been utilized

to automate the intrusion detection process to reduce human

intervention; several such techniques include neural networks

[1–6], fuzzy inference systems, evolutionary computation

machine learning [7,8], and so on. Several data mining

techniques have been introduced to identify key features or
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parameters that define intrusions [9–12]. A summary of

intrusion detection techniques is given by several research

works [13,14]. Some works applied neural networks as

classifiers to detect low level probes and a summary of

different port-scan detection techniques is also available

[15,16].

In this paper, we implement and evaluate the performance of

computational intelligent multi-agent system to detect computer

probes at the originating host. Intelligent agents were

encapsulated with different AI paradigms involving support

vector machines (SVM), multi-variate adaptive regression

splines (MARS) and linear genetic programming (LGP) for

detecting probes. Performance metrics include critical aspects of

intrusion detection such as scalability, real time detection and

accuracy. The IDS metric of real-time performance capability is

not considered directly since it depends on the actual

implementation. The data we use in our experiments is collected

on a real performing network at New Mexico Technology, USA

that includes normal activity and several classes of probing

attacks generated using an open source tool Network Mapper

(Nmap). We perform experiments to classify the network traffic

sessions into ‘‘Normal’’ and ‘‘Probe’’. With appropriately chosen

population size, program size, crossover rate and mutation rate,

linear genetic programs outperform other artificial intelligent

techniques in terms of detection accuracy. The experimental

results of overall classification accuracy- and class-specific

accuracies using SVM, MARS and LGP are reported.

A brief introduction to our computational intelligent agents-

based architecture is given in Section 2. Data generation and

collection is described in Section 3 of this paper. Section 3 also

briefly explains the different AI paradigms we used for
Fig. 1. Computational intelligent agents architecture [17].
classifying normal activity and probes. In Section 4, we briefly

describe the offline data analysis and feature extraction for real

time detection of probes at the originating host. Real-time data

collection and feature extraction are described in Section 5.

Implementation details of the computationally intelligent

multi-agent system are given in Section 6. Experimental

results of using SVM, MARS and LGP as classifiers are given

in Section 7. The summary and conclusions of our work are

given in Section 8.

2. Computational intelligent agents (CIA)-based

architecture

The CIA-based architecture for detecting computer attacks

consists of several modules that will be executed by the agents

in a distributed manner. Communication among the agents is

done utilizing the TCP/IP sockets. Agent modules running on

the host computers consist of data collection agents, data

analysis agents and response agents. Agents running on the

secure devices consist of the agent control modules that include

agent regeneration, agent dispatch, maintaining intrusion

signatures and information of the features and feature ranking

algorithms that help identify the intrusions (Fig. 1).

2.1. Host agents

Reside on the hosts of the internal network and perform the

tasks specified by the master agent. These agents are

implemented to be read only and fragile. In the event of

tampering or modification, the agent reports to the server agent

and automatically ends its life (Fig. 2).
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Fig. 2. Functionality of host-based agents.
2.2. Server agents

Reside on the secure server of the network. Controls the

individual host agents for monitoring the network and manages

communication between the agents if necessary. These agents

manage the life cycle and also update the host agents with new

detection, feature extraction, response and trace mechanisms

(Fig. 3).

The two diagrams above contain a variety of modules, as

described below:
� A
gent controller: Manages the agents’ functionality, life

cycle, communication with other agents and the response

mechanisms.
� A
ttack signatures module: Maintains all the attack signatures

and updates monitoring agents in the event of a new attack

signature.
� D
ata collection: Extracts features required by the detection

algorithm to decide whether the activity is malicious or

normal.
� I
ntrusion detection module: Consists of soft computing, rule

based and expert systems for classifying intrusions. Includes

a decision module that decides which classification algorithm
Fig. 3. Functionality of
should be used depending on the information collected by the

monitoring agent.
� R
esponse module: Decides weather a proactive (honey pots,

decoys, traps) or a reactive (block the activity at the

boundary) response mechanism should be implemented

depending on the intensity of the intrusion.
� T
race back initiation: Initiates trace back with the help of the

controller agent and the device they are residing on. In the

event of a network attack, they use the information of the

router tables and try to reach the boundary router of the

attackers source by verifying the path at each boundary.

Advantages of the proposed model:
� w
ith prior knowledge of the device and user profiles of the

network, specific agents can be designed and implemented in

a distributed fashion;
� h
ighly optimized parallel algorithms can be designed and

implemented independently for data collection agents, data

analysis agents and response agents;
� a
nalysis for computationally limited devices can be offloaded

to cooperating systems and run in parallel to provide

capabilities not otherwise available on such devices;
server agents.
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Fig. 4. MARS data estimation using spines and knots (actual data on the right) [20].
� a
ttack-specific agents can be implemented and dispatched to

respond to specific new threats;
� e
fficient detection algorithms can be implemented with less

overhead;
� r
apid intrusion response and trace back can be performed

more easily with the agents communicating with each other;
� a
djustable detection thresholds can be implemented.

3. Data mining: a computational intelligence approach

Data mining (also known as knowledge discovery in

databases, KDD) has been defined by Frawley as ‘‘The

nontrivial extraction of implicit, previously unknown and

potentially useful information from data’’. Data mining

techniques use machine learning, statistical and visualization

techniques to discover and present knowledge from the raw

information in a easily comprehensible form to humans. In the

field of intrusion detection data mining programs are used to

analyze audit trails and provide knowledge (features) that help

in distinguishing intrusive patterns from normal activity [9–

12].

It is well known that the intelligent systems, which can

provide human like expertise such as domain knowledge,

uncertain reasoning and adaptation to a noisy and time varying

environment, are important in tackling practical computing

problems. To detect stealthy probes, we investigated the

classification performance of support vector machines (SVM),

multi-variate adaptive regression splines (MARS) and linear

genetic programming (LGP).

3.1. Multi-variative adaptive regression splines

Splines can be considered as an innovative mathematical

process for complicated curve drawings and function approx-

imation. To develop a spline, the x-axis is broken into a

convenient number of regions. The boundary between regions

is also known as a knot. With a sufficiently large number of

knots virtually any shape can be well approximated. While it is

easy to draw a spline in two-dimensions by keying on knot

locations (approximating using linear, quadratic or cubic

polynomial, etc.), manipulating the mathematics in higher

dimensions is best accomplished using basis functions. The

MARS model is a regression model using basis functions as
predictors in place of the original data. The basis function

transform makes it possible to selectively blank out certain

regions of a variable by making them zero, and allows MARS to

focus on specific sub-regions of the data. It excels at finding

optimal variable transformations and interactions, and the

complex data structure that often hides in high-dimensional

data [18,19] (Fig. 4).

Given the number of records in most data sets, it is infeasible

to approximate the function y = f(x) by summarizing y in each

distinct region of x. For some variables, two regions may not be

enough to track the specifics of the function. If the relationship

of y to some x’s is different in three or four regions, for example,

the number of regions requiring examination is even larger than

34 billion with only 35 variables. Given that the number of

regions cannot be specified a priori, specifying too few regions

in advance can have serious implications for the final model. A

solution is needed that accomplishes the following two criteria:
� ju
dicious selection of which regions to look at and their

boundaries;
� ju
dicious determination of how many intervals are needed for

each variable.

Given these two criteria, a successful method will essentially

need to be adaptive to the characteristics of the data. Such a

solution will probably ignore quite a few variables (affecting

variable selection) and will take into account only a few var-

iables at a time (also reducing the number of regions). Even if

the method selects 30 variables for the model, it will not look at

all 30 simultaneously. Such simplification is accomplished by a

decision tree at a single node, only ancestor splits are being

considered; thus, at a depth of six levels in the tree, only six

variables are being used to define the node [19].

3.2. Support vector machines (SVMs)

The SVM approach transforms data into a feature space F

that usually has a huge dimension. It is interesting to note that

SVM generalization depends on the geometrical characteristics

of the training data, not on the dimensions of the input space

[21,22]. Training a support vector machine (SVM) leads to a

quadratic optimization problem with bound constraints and one

linear equality constraint. Vapnik shows how training a SVM
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Table 1

Probe attacks

Attack type Service Mechanism Effect of the attack

Ipsweep ICMP Abuse of feature Identifies active machines

Mscan Multiple Abuse of feature Looks for known vulnerabilities

Nmap Multiple Abuse of feature Identifies active ports on a machine

Saint Multiple Abuse of feature Looks for known vulnerabilities

Satan Multiple Abuse of feature Looks for known vulnerabilities
for the pattern recognition problem leads to the following

quadratic optimization problem [23].

Minimize : WðaÞ ¼ �
Xl

i¼1

ai þ
1

2

Xl

i¼1

Xl

j¼1

yiy jaia jkðxi; x jÞ (1)

Subject to
Xl

i¼18 i:0�ai�C

yiai (2)

where l is the number of training examples a is a vector of l

variables and each component a corresponds to a training
i

example (xi, yi). The solution of (1) is the vector a* for which

(1) is minimized and (2) is fulfilled.

3.3. Linear genetic programming (LGP)

LGP is a variant of the genetic programming (GP) technique

that acts on linear genomes [24]. The linear genetic

programming technique used for our current experiment is

based on machine code level manipulation and evaluation of

programs. Its main characteristics in comparison to tree-based

GP lies is that the evolvable units are not the expressions of a

functional programming language (like LISP), but the

programs of an imperative language (like C) are evolved. In

the automatic induction of machine code by genetic program-

ming, individuals are manipulated directly as binary code in

memory and executed directly without passing an interpreter

during fitness calculation. The LGP tournament selection

procedure puts the lowest selection pressure on the individuals

by allowing only two individuals to participate in a tournament.

A copy of the winner replaces the loser of each tournament. The

crossover points only occur between instructions. Inside

instructions the mutation operation randomly replaces the

instruction identifier, a variable or the constant from valid

ranges. In LGP, the maximum size of the program is usually

restricted to prevent programs without bounds. As LGP could

be implemented at machine code level, it will be fast to detect

intrusions in a near real time mode [24].

4. Offline feature extraction and evaluation

A sub set of the DARPA intrusion detection data set is used

for offline analysis. In the DARPA intrusion detection

evaluation program, an environment was set up to acquire

raw TCP/IP dump data for a network by simulating a typical

U.S. Air Force LAN. The LAN was operated like a real

environment, but being blasted with multiple attacks [25,26].

For each TCP/IP connection, 41 various quantitative and

qualitative features were extracted [9]. The 41 features

extracted fall into three categorties, ‘‘intrinsic’’ features that

describe about the individual TCP/IP connections can be

obtained from network audit trails, ‘‘content-based’’ features

that describe about payload of the network packet can be

obtained from the data portion of the network packet, ‘‘traffic-

based’’ features, that are computed using a specific window

(connection time or no of connections). As DOS and probe
attacks involve several connections in a short time frame,

whereas R2U and U2Su attacks are embedded in the data

portions of the connection and often involve just a single

connection; ‘‘traffic-based’’ features play an important role in

deciding whether a particular network activity is engaged in

probing or not.

4.1. Probing

Probing is a class of attacks where an attacker scans a

network or a host to gather information or find known

vulnerabilities. An attacker with a map of machines and

services that are available on a network or a host can use this

information to look for exploits. There are different types of

probes: some of them abuse the computer’s legitimate features;

some of them use social engineering techniques. This class of

attacks is the most commonly heard and a precursor for

automated attacks; requires very little technical expertise

(Table 1):

Ipsweep: Probing attack performed against all operating

systems using ICMP service where an adversary performs a

surveillance sweep to determine which hosts are responding

on a network. Information obtained from surveillance is

useful to an adversary in launching automated attacks or in

making the vulnerable hosts as stepping stones for future

distributed attacks. This attack helps the adversary identify

active machines on the network and might degrade services

for legitimate users. Looking for multiple ping requests,

destined for all possible machines on a network, all coming

from the same host can help detect this attack.

Mscan: Probing tool used to perform an attack against all

operating systems using multiple services; where an

adversary uses both DNS zone transfers and/or brute force

scanning of IP addresses to locate machines, and look for

vulnerabilities to launch future attacks. This attack helps the

adversary identify known vulnerabilities on the network and

the host machine. Looking for connection requests from an

out side machine to vulnerable services (netbios-ns, epmap,

ms-sql-m, dameware, microsoft-ds, realsecure, domain,

bind, imap, pop, NFS, cgi-bin, open X servers) within a

specified period of time, can help detect this attack.

Nmap: General-purpose probing tool used to perform

network scans against all operating systems using multiple

services with user specified time intervals; an adversary can

specify which services to scan for, how much time to wait

between each service, and whether the services should be

scanned sequentially or in a random order. This attack helps
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MA
the adversary identify services running, operating system,

and known vulnerabilities on the network and the target

machine. Looking for connection requests to multiple

services within a specific time window can help detect this

attack.

Saint: Security Administrator’s Integrated Network Tool is

used to gather information about remote hosts (all operating

systems) using multiple services; an adversary uses a few

network services such as finger, ftp, tftp, statd, rpc, NIS, NFS

and other relevant network services. This attack helps the

adversary identify network services running, system flaws,

critical security flaws on the victims’ machine. Looking for

connections requests to specific network services from a

machine other than an authorized machine within in a

specific time window can help detect this attack.

Satan: Probing tool used to perform scans against all

operating systems using a few network services; where an

adversary uses legitimate network services to gather

information on particular vulnerabilities on the victims’

machine. Looking for connections requests to specific

vulnerable network services from a machine other than an

authorized machine within in a specific time window can

help detect this attack.
4.2. Input feature selection

Feature selection is an important issue in intrusion

detection. Of the large number of features that can be

monitored for intrusion detection purpose, which are truly

useful, which are less significant, and which may be useless?

The question is relevant because the elimination of useless

features (the so-called audit trail reduction) enhances the

accuracy of detection while speeding up the computation, thus
le 2

st important feature description as ranked by (SVDF, LGP, MARS)

king algorithm Feature des

DF Source byt

dst_host_sr

to the desti

Count: num

Protocol ty

srv_count:

during a sp

Flag: norm

P dst_host_d

rerror_rate:

srv_diff_ho

Logged in:
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Source byt

RS dst_host_d

dst_host_sr

the destina

Source byt

dst_host_sa

srv_count::

connection

rerror_rate:
improving the overall performance of IDS. In cases where

there are no useless features, by concentrating on the most

important ones we may well improve the time performance of

an IDS without affecting the accuracy of detection in

statistically significant ways.

The feature selection problem for intrusion detection is

similar in nature to various engineering problems that are

characterized by:
� H
cr

es:

v_

na

b

pe

nu

ec

al

iff_

%

st

bi

pe

es:

iff_

v_

tio

es:

m

n

du

%

aving a large number of input variables x = (x1, x2,. . ., xn) of

varying degrees of importance to the output y; i.e., some

elements of x are essential, some are less important, some of

them may not be mutually independent, and some may be

useless or irrelevant (in determining the value of y).
� L
acking an analytical model that provides the basis for a

mathematical formula that precisely describes the input–

output relationship, y = F(x).
� H
aving available a finite set of experimental data, based on

which a model (e.g., intelligent systems) can be built for

simulation and prediction purposes.

Due to the lack of an analytical model, one can only seek

to determine the relative importance of the input variables

through empirical methods. A complete analysis would

require examination of all possibilities, e.g., taking two

variables at a time to analyze their dependence or correlation,

then taking three at a time, etc. This, however, is both

infeasible (requiring 2n experiments!) and not infallible

(since the available data may be of poor quality in sampling

the whole input space). Features are ranked based on their

influence towards the final classification. Description of most

important features as ranked by three feature-ranking

algorithms (SVDF, LGP, MARS) is given in Table 2. The
iption

number of bytes sent from the host system to the destination system

count:: number of connections from the same host with same service

tion host during a specified time window

er of connections made to the same host system in a given interval of time

: type of protocol used to connect (e.g., tcp, udp, icmp, etc.)

mber of connections to the same service as the current connection

ified time window

or error status of the connection

srv_rate: % of connections to different services from a destination host

of connections that have REJ errors

_rate: % of connections that have same service to different hosts

nary decision

of service used to connect (e.g., fingure, ftp, telnet, ssh, etc.)

number of bytes sent from the host system to the destination system

srv_rate: % of connections to different services from a destination host

count:: number of connections from the same host with same service to

n host during a specified time window

number of bytes sent from the host system to the destination system

e_srv_rate: % of connections to same service ports from a destination host

umber of connections to the same service as the current

ring a specified time window

of connections that have REJ errors
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Table 3

Classifier performance of all 41 features and most important 6 features

Class Normal

(41 features)

Probe

(41 features)

Normal

(6 features)

Probe

(6 features)

SVM 99.55 99.70 99.23 99.16

MARS 96.08 92.32 94.34 90.79

LGP 99.89 99.85 99.77 99.87
(training and testing) data set contains 11,982 randomly

generated points from the five classes, with the number of

data from each class proportional to its size, except that the

smallest class is completely included. The normal data

belongs to class1, probe belongs to class 2, denial of service

belongs to class 3, user to super user belongs to class 4 and

remote to local belongs to class 5. Where attack data is a

collection of 22 different types of attack instances that

belong to the four classes probe, denial of service, user to

super user and remote to local. A different randomly

selected set of 6890 points of the total data set (11,982)

is used for testing different intelligent techniques. Cla-

ssifier performance using all the 41 features and most

important 6 features as inputs to the classifier is given in

Table 3.

4.3. SVM-specific feature ranking method

Information about the features and their contribution

towards classification is hidden in the support vector decision

function. Using this information one can rank their significance,

i.e., in the equation

FðXÞ ¼
X

WiXi þ b

The point X belongs to the positive class if F(X) is a positive

value. The point X belongs to the negative class if F(X) is

negative. The value of F(X) depends on the contribution of each

value of X and Wi. The absolute value of Wi measures the

strength of the classification. If Wi is a large positive value then

the ith feature is a key factor for positive class. If Wi is a large

negative value then the ith feature is a key factor for negative

class. If Wi is a value close to zero on either the positive or the

negative side, then the ith feature does not contribute

significantly to the classification. Based on this idea, a ranking

can be done by considering the support vector decision

function.

4.3.1. Support vector decision function ranking

The input ranking is done as follows: First the original data

set is used for the training of the classifier. Then the classifier’s

decision function is used to rank the importance of the features.

The procedure is:
1. C
alculate the weights from the support vector decision

function;
2. R
ank the importance of the features by the absolute values of

the weights.
4.4. Ranking algorithm using evolutionary algorithms

The performance of each of the selected input feature

subsets is measured by invoking a fitness function with the

correspondingly reduced feature space and training set and

evaluating the intrusion detection accuracy. Once the

required number of iterations are completed, the evolved

high ranked programs are analyzed for how many times each

input appears in a way that contributes to the fitness of

the programs that contain them. The best feature subset

found is then output as the recommended set of features to be

used in the actual input for the intrusion detection model

[27].

In the feature selection problem, the main interest is in the

representation of the space of all possible subsets of the

given input feature set. Each feature in the candidate feature

set is considered as a binary gene and each individual

consists of fixed-length binary string representing some

subset of the given feature set. An individual of length d

corresponds to a d-dimensional binary feature vector Y,

where each bit represents the elimination or inclusion of the

associated feature. Then, yi = 0 represents elimination and

yi = 1 indicates inclusion of the ith feature. Fitness F of an

individual program p is calculated as the mean square

erro (MSE) between the predicted output (Opred
i j ) and the

desired output (Odes
i j ) for all n training samples and m outputs

[24].

Fð pÞ ¼ 1

n � m
Xn

i¼1

Xm

j¼1

ðOpred
ij � Odes

ij Þ
2 þ w

n
CE

¼ MSEþ w �MCE

Classification error (CE) is computed as the number of

misclassifications. Mean classification error (MCE) is added to

the fitness function while its contribution is proscribed by an

absolute value of weight (W).

4.5. Ranking algorithm using MARS

Generalized cross-validation is an estimate of the actual

cross-validation which involves more computationally inten-

sive goodness of fit measures. Along with the MARS

procedure, a generalized cross-validation procedure is used

to determine the significant input features. Non-contributing

input variables are thereby eliminated.

GCV ¼ 1

N

XN

i¼1

�
yi � f ðxiÞ2

1� k=N

�

where N is the number of records and x and y are independent

and dependent variables, respectively. k is the effective number

of degrees of freedom whereby the GCV adds penalty for

adding more input variables to the model. The contribution

of the input variables may be ranked using the GCV with/

without an input feature [19,20].



S. Mukkamala et al. / Applied Soft Computing 7 (2007) 631–641638
5. Real-time data collection and feature extraction

Experiments are performed on a real network using two

clients and the server that serves the New Mexico Tech

Computer Science Department network. The clients had CIA

installed on them to identify or detect probes that are targeted to

the server we are protecting. Our primary goal in these

experiments is to detect probes targeting the server we are

trying to protect. Our network parser gives the summary of each

connection made from a host to the server and constructs a

feature set to input into a classifier for classification. The output

from a classifier is either normal or probe for each connection.

Nmap an open source tool is used to collect probe data [28].

Probing is a class of attacks where an attacker scans a network

to gather information or find known vulnerabilities. An attacker

with a map of machines and services that are available on a

network can use the information to look for exploits. There are

different types of probes: some of them abuse the computer’s

legitimate features; some of them use social engineering

techniques. This class of attacks is the most commonly heard

and requires very little technical expertise. Nmap is installed on

the clients that have CIA installed. A variety of probes SYN

stealth, FIN stealth, ping sweep, UDP scan, null scan, xmas

tree, IP scan, idle scan, ACK scan, window scan, RCP scan and

list scan with several options are targeted at the server. Table 4

describes the probing attacks performed on a live performance

network. Normal data included multiple sessions of ftp, telnet,

SSH, http, SMTP, pop3 and imap. Network data originating

from a host to the server that included both normal and probes is

collected for analysis; for proper labeling of data for training

the classifiers normal data and probe data are collected at

different times:

SYN stealth scan: Probing attack performed against all

operating systems using multiple TCP services where an

adversary performs surveillance to determine which hosts

are responding to specific services on a network. Informa-

tion obtained from surveillance is useful to an adversary in

launching automated attacks, in making the vulnerable hosts

as stepping stones for future distributed attacks or for

launching future denial of service attacks. This attack helps

the adversary identify active machines on the network and

might degrade services for legitimate users. Looking for

multiple half open TCP connection requests, destined for all
Table 4

Probe attacks used in CIA implementation and evaluation

Attack type Service Mechanism

SYN stealth Multiple Abuse of feature

FIN stealth Multiple Abuse of feature

Ping sweep ICMP Abuse of feature

UDP scan Multiple Abuse of feature

Null scan Multiple Abuse of feature

IP scan Multiple Abuse of feature

ACK Scan Multiple Abuse of feature

Window scan Multiple Misconfiguration

RCP scan Multiple Abuse of feature
possible machines on a network, can help detect this attack.

FIN stealth scan: Probing attack performed against all

operating systems except Windows 95/NT; when SYN

scanning isn’t clandestine enough. By theory closed ports

are required to reply to a probe packet with a RST, while

open ports must ignore the packets. An adversary abuses the

feature; to determine what services are running on a network

or a host system. This scan bypasses the traditional firewalls

and network filters. This attack helps the adversary identify

active services and the hosts’ operating system. Looking for

connection requests to closed services within in a specific

time window can help detect this attack.

Ping sweep: Snooping performed against all operating

systems using ICMP where an adversary performs a

surveillance sweep to determine which hosts are responding

on a network. Information obtained from surveillance is

useful to an adversary in launching automated attacks or in

making the vulnerable hosts as stepping stones for future

distributed attacks. This attack helps the adversary identify

active machines on the network and might degrade services

for legitimate users. Ping sweep if repeated continuously or

launched in a coordinated fashion might result into a low

level denial of service attack. Looking for multiple ping

requests, destined for all possible machines on a network, all

coming from the same host or within a specific time window

from multiple hosts can help detect this attack.

UDP scan: Probing attack performed against all operating

systems using UDP where an adversary sends 0 byte UDP

packets to each UDP service on the target machine to

determine which services are running on the victims’

machine. This attack helps the adversary identify vulnerable

UDP services on victims’ network. This information is

mostly used to launch automated distributed and coordi-

nated denial of service attacks. Looking for multiple UDP

packets with 0 bytes within a specific time window, can help

detect this attack.

Null scan: Probing attack performed against all operating

systems except Window 95/NT where an adversary turns off

all flag options (FIN, URG, PUSH, etc.). This attack helps

identify victims’ operating system; by sending connection

requests to services running on the host machine. Looking

for multiple connection requests with all the flags turned off

within a specific time window, destined for all possible

machines on a network, can help prevent this attack.
Effect of the attack

Identifies active machines

Identifies active services

Identifies active machines

Identifies active UDP services

Identifies active services

Identifies active protocols

Identifies the firewall mechanism (stateful or simple network filter)

Identifies active services

Identifies active remote procedure call ports (RPC)
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Fig. 5. CIA prototype implementation.
IP scan: Snooping performed against all operating systems

using raw IP packets without any specified future protocol

header. An adversary sends raw IP packets without any

specific future protocol header to each specific protocol on

the victims’ machine. If an ICMP message stating protocol

unreachable is received, then it’s assumed that specific

protocol is not in use. This attack helps identify all the

supported protocols on a victims’ network. Looking for

multiple connection requests without a specific service

within a specific time can help detect this attack.

ACK scan: Snooping attack performed to map firewall rule

sets where an adversary sends ACK packets (random

acknowledgement/sequence numbers) to specific ports. If

RST comes back, the specified port is classified as

‘‘unfiltered’’. If nothing comes back or an ICMP error

message comes, the specified port is classified as ‘‘filtered’’.

This attack helps identify filtered services and a type of

firewall a victims’ network has. Looking for random ACK

packets can help detect this attack.

Window scan: Probing attack performed against all

operating systems using the vulnerability in TCP window

size reporting. This attack helps the adversary identify active

services as well as filtered services on a victims’ machine.

RCP scan: Snooping performed against all operating

systems using multiple services to identify active remote

procedure call services. This attack helps the adversary

identify active remote procedure call services as well as the

associated program and version numbers. This information

is mostly used to execute arbitrary code by the adversary on

a victims’ machine. Looking for multiple connection

requests to specific remote procedure call services within

a specific time, can help detect this attack.
Table 5

Performance of MARS

Class Normal Probe Accuracy (%)

Normal 2018 18 99.12

Probe 0 3297 100.00

Table 6

Performance of SVMs

Class Normal Probe Accuracy (%)

Normal 2031 5 99.75

Probe 1 3296 99.99
6. CIA system and implementation

Computer probes that are intended to discover information

of a computer system can be detected by careful observation of

network packets. Probing tools in an effort to identify host

information send connection requests to closed ports and non-

existing systems. Knowledge of how a network and its hosts are

being used will help in distinguishing between normal activity

and probes. The primary goal of CIA is to detect probes at the

host level. The implemented host agent comprises three

components: a data collection module for parsing network

packets, a data analysis module for intrusion determination and

a response module. The network packet parser uses the

WINPCAP library to capture network packets and extracts the

relevant features required for classification. The output of the

parser includes seven features: (1) duration of the connection to

the target machine, (2) protocol used to connect, (3) service

type, (4) number of source bytes, (5) number of destination

bytes, (6) number of packets sent and (7) number of packets

received.

Feature set for our experiments is chosen based on our

offline feature-ranking results described in Section 4. Network

parser reformats the extracted features to input a classifier to

detect probes among other normal network packets. Once the
feature set is being constructed it is fed into a suite of classifiers.

Classifiers used in our experiments are SVM, MARS and LGP.

Output from the classifier is the classification of the connection

into normal activity or probe. If a connection is classified as

probe a classifier sends a message to the server using TCP/IP

sockets and the boundary controllers are updated for necessary

response with human intervention to block malicious activity

(Fig. 5).

7. Evaluation

Network packets contain information of protocol and

service used to establish connection between a client and the

server. Network services have an expected number of bytes of

data to be passed between a client and the server. If data flow is

too little or too much it indicates a suspicion in a connection

established that indicates a misuse in service. Using this

information normal and probing activities can be separated. In

our evaluation, we perform binary classification (normal/

probe). The (training and testing) data set contains 10,369 data

points generated from normal traffic and probes. The set of

5036 training data and 5333 testing data are divided into two

classes: normal and probe. Two separate data sets of sizes 5036

and 5333 are used for training and validating the performance

of CIA using SVM, MARS and LGP as classifiers. Tables 5–7
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Table 7

LGP parameter settings

Parameter Setting

Population size 512

Tournament size 4

Max no of tournaments 120,000

Mutation frequency 90.94%

Crossover frequency 34.21%

No of demes 10

Max program size 128

Target subset size 100

Table 8

Performance of LGP

Class Normal Probe Accuracy (%)

Normal 2036 0 100.00

Probe 0 3297 100.00
summarize the overall classification accuracy of CIA using

MARS, SVM and LGP.

7.1. Experiments using MARS as a classifier

We use five basis functions and selected a setting of

minimum observation between knots as 10. The MARS training

mode is being set to the lowest level to gain higher accuracy

rates. A MARS model is employed to perform binary

classification (normal and probe). The objective is to separate

normal and probe patterns. Table 5 summarizes the results of

MARS as a classifier.

7.2. Experiments using SVMs as a classifier

We used the radial basis function (RBF) kernel function that

defines the feature space in which the training set examples will

be classified. Table 6 summarizes the results of the experiments

using SVMs.

7.3. Experiments using LGPs as a classifier

The settings of various linear genetic programming system

parameters are of utmost importance for successful perfor-

mance of the system. The population space has been subdivided

into multiple subpopulation or demes. Migration of individuals

among the subpopulations causes evolution of the entire

population. It helps to maintain diversity in the population, as

migration is restricted among the demes. Moreover, the

tendency towards a bad local minimum in one deme can be

countered by other demes with better search directions. The

various LGP search parameters are the mutation frequency,

crossover frequency and the reproduction frequency: the

crossover operator acts by exchanging sequences of instruc-

tions between two tournament winners. Steady state genetic

programming approach was used to manage the memory more

effectively. After a trial and error approach, the following

parameter settings were used for the experiments (Table 8).
8. Conclusions

Computational intelligent agents-based system that is capable

of detecting stealthy probes at the host level is being

implemented and the results obtained are demonstrated in this

paper. A comparison of different computational intelligent

techniques is also given. Linear genetic programming technique

outperformed SVM and MARS with a 100% detection rate on the

test dataset.

The proposed multi-agent framework can operate asyn-

chronously and in parallel, and hence could be useful in

monitoring huge networks. By adding new agents, the system

can be easily adapted to an increased problem size. Due to the

interaction of different agents, failure of one agent may not

degrade the overall detection performance of the network.

When compared to a centralized system, the proposed

distributed framework might be also more cost effective and

efficient.

Our future work will be targeted towards multiple agent-

based intrusion detection systems that can detect different types

of attacks at the host and developing active response

mechanisms in an event of intrusion.
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