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ABSTRACT. Scheduling is one of the core steps to efficiently exploit the capabilities of
emergent computational systems such as grid. Grid environment is a dynamic, hetero-
geneous and unpredictable one sharing different services among many different users.
Because of heterogeneous and dynamic nature of grid, the methods used in traditional
systems could mot be applied to grid scheduling and therefore new methods should be
looked for. This paper represents a discrete Particle Swarm Optimization (DPSO) ap-
proach for grid job scheduling. PSO is a population-based search algorithm based on the
simulation of the social behavior of bird flocking and fish schooling. Particles fly in prob-
lem search space to find optimal or near-optimal solutions. In this paper, the scheduler
aims at minimizing makespan and flowtime simultaneously in grid environment. FExper-
imental studies illustrate that the proposed method is more efficient and surpasses those
of reported meta-heuristic algorithms for this problem.

Keywords: Grid computing, Scheduling, Makespan, Flowtime, Particle swarm opti-
mization

1. Introduction. Grid computing has emerged as an important new field, distinguished
from conventional distributed computing by its focus on large-scale resource sharing, inno-
vative applications and in some cases, high-performance orientation [1]. Grid is composed
of a set of virtual organizations (VOs). Each VO has its various resources and services,
and on the basis of its policies provides access to them and hence grid resources and ser-
vices are much different and heterogeneous, and are distributed in different geographically
areas. At any moment, different resources are added to or removed from grid, and as a
result, grid environment is highly dynamic.

Grid resources are registered within one or more Grid Information Services (GISs).
The end users submit their requests to the Grid Resource Broker (GRB). Different re-
quests demand different requirements and available resources have different capabilities.
GRB discovers proper resources for executing these requests by querying in GIS and then
schedules them on the discovered resources.
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According to the type of jobs being scheduled, the scheduling problem can be classified
into two types: scheduling set of independent jobs and scheduling a directed acyclic
graph (DAG) composed of communicating jobs. In this paper we consider the first type
which involves allocation of a set of independent jobs from different users to a set of
computing resources. This framework is motivated by problems that are addressed by
collaborative computing efforts such as SETI@home [18], factoring large numbers [37],
and the Mersenne prime search [38]. These applications are most suited for computational
grids, because communication can easily become a bottleneck for tightly coupled parallel
applications. Condor [27] and APST [39] are one of the first projects providing specific
support for such applications.

Since grid environments are very dynamic and the computing resources are very het-
erogeneous, the methods used in traditional systems could not be applied to grid job
scheduling and therefore new methods should be looked for. An appropriate and optimal
scheduling in grid results in more efficient use of available resources and hence higher
satisfaction in users. Until now some works has been done in order to schedule jobs in
grid. Yet according to new nature of the subject further research is required.

Cao [3] used agents for resource management and scheduling in grid environment. In
this method different resources and services are regarded as different agents and grid
resource discovery and advertisement are performed by these agents. Buyya [4] used
economic based concepts including commodity market, posted price modeling, contract
net models, bargaining modeling, etc for grid scheduling. He et al. [5], Cheng et al. [6]
and Kumar et al. [7] used fuzzy methods for grid scheduling.

As mentioned in [8] scheduling is NP-complete. Meta-heuristic methods have been used
to solve well-known NP-complete problems (e.g. [9,11,25,40]). Efficient Meta-heuristic
methods, which are used frequently, are simulated annealing (SA) [23], genetic algorithm
(GA) [24], ant colony optimization (ACO) [26] and particle swarm optimization (PSO)
[17].

Yarkhan and Dongarra [10] used simulated annealing approach for grid job scheduling.
Page and Naughton [13] used a genetic algorithm method for scheduling heterogeneous
computing systems. In this method the scheduling strategy operates in a dynamically
changing computing resource environment and adapts to variable communication costs
and variable availability of processing resources.

Braun et al. [15] described eleven heuristics and compared them on different types of
heterogeneous computing environments. The authors illustrated that the GA scheduler
can obtain better results in comparison with others. Carretero et al. [29] used Genetic
Algorithm-based schedulers for computational grids and most of GA operators are im-
plemented and compared to find the best GA scheduler for this problem. In [35] the
authors also focused on Struggle Genetic Algorithms and their tuning for scheduling of
independent jobs in computational grids and hash-based implementations of the struggle
Genetic operator for the GAs were proposed.

Izakian et al. [12] compared six efficient and popular pure heuristics for scheduling
meta-tasks in heterogeneous computing systems. In [16] authors used a fuzzy parti-
cle swarm optimization for minimizing makespan and flowtime in computational grids.
Ritchie and Levine [36] used a hybrid ant colony optimization for scheduling in HC sys-
tems. In this method, authors combined ant colony optimization with local and tabu
search to find shorter schedules.

Different criteria can be used for evaluating efficacy of scheduling algorithms, the most
important of which are makespan and flowtime. Makespan is the time when grid finishes
the latest job and flowtime is the sum of finalization times of all the jobs. An optimal
schedule will be the one that optimizes the flowtime and makespan [16,28,29]. The method
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proposed in [16,28,29] aims at simultaneously minimizing make span and flowtime. In
this paper, a version of discrete particle swarm optimization (DPSO) is proposed for grid
job scheduling and the goal of scheduler is to minimize the two parameters mentioned
above simultaneously. This method is compared to the methods presented in [15,16,25,36]
in order to evaluate its efficacy. The experimental results show the presented method is
more efficient than others and this method can be effectively used for grid scheduling. The
remainder of this paper is organized in the following manner; in Section 2 we formulate the
problem, in Section 3 PSO paradigm is briefly discussed, Section 4 describes our proposed
method for grid job scheduling, and Section 5 reports the experimental results. Finally
Section 6 concludes this work.

2. Problem Formulation. As mentioned in Section 1, GRB is responsible for scheduling
by receiving the jobs from the users and querying their required services in GIS and then
allocating these jobs to the discovered services. Suppose in a specific time interval, n
jobs {Ji, Ja, ..., J, } are submitted to GRB. Also assume the jobs are independent of each
other (with no inter-task data dependencies) and preemption is not allowed (they cannot
change the resource they has been assigned to). At the time of receiving the jobs by GRB,
m machines { My, My, ..., M,,} are within the grid. In this paper scheduling is done at the
machine level and it is assumed that each machine uses First-Come, First-Served (FCFS)
method for performing the received jobs.

In this paper the expected time to compute (ETC) values of each job on each machine is
assumed to be known based on user-supplied information, experiential data, job profiling
and analytical benchmarking, or other techniques. Determination of ETC values is a
separate research problem, and the assumption of such ETC information is a common
practice in mapping research [2]. In [12,14,15,29,35] ECT matrices are used to estimate
the required time for executing each job in each machine. An ETC matrix is an n X m
matrix in which n is the number of jobs and m is the number of machines. One row of
the ETC matrix contains the estimated execution time for a given job on each machine.
Similarly one column of the ETC matrix consists of the estimated execution time of a
given machine for each job. Thus, for an arbitrary job J; and an arbitrary machine M;,
ETC(J;, M;) is the estimated execution time of J; on M;. In ETC model we take the
usual assumption that we know the computing capacity of each resource, an estimation
or prediction of the computational needs of each job, and the load of prior work of each
resource.

Assume that E;; (1 € {1,2,...,m}, j € {1,2,...,n}) is the execution time for performing
jth job in ith machine and W; (i € {1,2,...,m}) is the previous workload of M; (the
time required for performing the jobs given to it in the previous steps), then Equation
(1) shows the time required for M; to complete the jobs included in it. According to the
aforementioned definition, makespan and flowtime can be estimated using Equation (2)
and Equation (3) respectively.

V job j allocated to machine i
makespan = max{ E E,;+W;}, i1e{l,2,..,m} (2)
V job j allocated to machine ¢

flowtime = Zzl Z Eij (3)

V job j allocated to machine i

As mentioned in the previous section the goal of the scheduler in this paper is to
minimize makespan and flowtime simultaneously.
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3. Particle Swarm Optimization. Particle Swarm Optimization (PSO) is a popula-
tion based search algorithm inspired by bird flocking and fish schooling originally de-
signed and introduced by Kennedy and Eberhart [17] in 1995. The basic PSO has been
applied successfully to a number of problems including standard function optimization
problems [30-32], solving permutation problems [33], and training multi-layer neural net-
works [20,21,32,34] and its use is rapidly increasing. A PSO algorithm contains a swarm of
particles in which each particle includes a potential solution. In contrast to the evolution-
ary computation paradigms such as genetic algorithm, a swarm is similar to a population
while a particle is similar to an individual. The particles fly through a multidimensional
search space in which the position of each particle is adjusted according to its own expe-
rience and the experience of its neighbors. PSO system combines local search methods
(through self experience) with global search methods (through neighboring experience),
attempting to balance exploration and exploitation [25].

3.1. Binary PSO. Primarily PSO was successfully used to solve continuous problems.
In 1997 the binary version of this algorithm was presented by Kennedy and Eberhart
[22] for discrete optimization problems. In this method each particle is composed of D
elements which indicate a potential solution. In order to evaluate the appropriateness
of solutions a fitness function is always used. Each particle is considered as a position
in a D-dimensional space and each element of a particle position can take the binary
value of 0 or 1 in which 1 means “included” and 0 means “not included”. Each element
can change from 0 to 1 and vise versa. Also each particle has a D-dimensional velocity
vector the elements of which are in range [—Viyax, Vinax|.- Velocities are defined in terms of
probabilities that a bit will be in one state or the other. At the beginning of the algorithm,
a number of particles and their velocity vectors are generated randomly. Then in some
iteration the algorithm aims at obtaining the optimal or near-optimal solutions based on
its predefined fitness function. The velocity vector is updated in each time step using two
best positions, pbest and nbest, and then the position of the particles is updated using
velocity vectors. Pbest and nbest are D-dimensional, the elements of which are composed
of 0 and 1 the same as particles position and operate as the memory of the algorithm.
The personal best position, pbest, is the best position the particle has visited and nbest
is the best position the particle and its neighbors have visited since the first time step.
Based on the size of neighborhoods two PSO algorithms can be developed. When all
of the population size of the swarm is considered as the neighbor of a particle, nbest is
called global best (gbest) and if the smaller neighborhoods are defined for each particle,
then nbest is called local best (lbest). gbest uses the star neighborhood topology and
lbest usually uses ring neighborhood topology. There are two main differences between
gbest and lbest with respect to their convergence characteristics [32]. Due to the larger
particle interconnectivity of the gbest PSO, it converges faster than the lbest PSO, but
lbest PSO is less susceptible to being trapped in local optima. Equations (4) and (5) is
used to update the velocity and position vectors of the particles respectively.

V() = V) + evm(pestt(j) — XE(G)) + cara(nbest'(5) — XH(5)) (4)
e os (D)
Dy ) 1 sig(V," " (g)) > rij
v (‘7) 0 otherwise (5)

where,

sia(VD () — 1
oG = (6)

In Equation (4) X(j) is jth element of ith particle in ¢th step of the algorithm and V}(j)
is the jth element of the velocity vector of the ¢th particle in tth step. ¢; and ¢y are positive
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acceleration constants which control the influence of pbest and nbest on the search process.
Also r; and ry are random values in range [0, 1] sampled from a uniform distribution.
ri; in Equation (5) is a random number in range [0, 1] and Equation (6) shows sigmoid
function. Figure 1 shows the pseudo-code of binary PSO. Stopping condition in Figure
1 can either be the maximum number of iterations, or finding an acceptable solution, or
having no improvement in a number of iterations.

4. The Proposed PSO Algorithm for Grid Job Scheduling. In this section we
propose a version of discrete particle swarm optimization for grid job scheduling. Particles
need to be designed to present a sequence of jobs in available grid machines. Also the
velocity has to be redefined. Details are given what follows.

Create and initialize a D-dimensional swarm with P particles
repeat
for each particle 1 =1,..., P do
if f(X;) > f(pbest;) then // f() represent the fitness function
pbest; = X;;
end
if f(pbest;) > f(nbest;) then
nbest; = pbest;;
end
end
for each particle i =1,..., P do
update the velocity vector using Equation (4)
update the position vector using Equation (5)
end
until stopping condition is true;

FiGURE 1. The pseudo-code of binary PSO

4.1. Position of particles. One of the key issues in designing a successful PSO algorithm
is the representation step which aims at finding an appropriate mapping between problem
solution and PSO particle. We use two types of representation, namely the direct and
indirect representations. In direct representation solutions are encoded in a 1 X n vector,
called position vector, in which n is the number of jobs received by GRB in a time interval.
The elements of this vector are natural numbers included in range [1, m], in which m is
the number of available machines in the grid at the time of scheduling. Assume that X
shows the position of kth particle; Xj(j) indicates the machine where job j is assigned
by the scheduler in this particle. Note that in this representation a machine number can
appear more than once in a particle.

In indirect representation solutions are encoded in a m x n matrix, called position
matrix, in which m is the number of available machines at the time of scheduling and n is
the number of jobs. The position matrix of each particle has the two following properties:

1) All the elements of the matrices have either the value of 0 or 1. In other words if X
is the position matrix of kth particles, then:

Xi(i,7) € {0,1} (V4,5), i€{l,2,...m}, je{l,2,..,n} (7)

2) In each column of these matrices only one element is 1 and others are 0.



6 H. IZAKIAN, B. T. LADANI, A. ABRAHAM AND V. SNASEL

In position matrix each column represents a job allocation and each row represents
allocated jobs in a machine. In each column it is determined that a job should be per-
formed by which machine. Assume that X, shows the position matrix of kth particle. If
Xk (i,7) = 1 then the jth job will be performed by ith machine. Figures 2 and 3 show
two equivalent potential solutions with direct and indirect representations in a problem
with 5 jobs and 3 machines. These solutions show that J, and J; will be performed in
My, J3 and Js will be performed in My and J; will be performed in Ms. As it could be
realized from these figures the two presented methods for the problem encoding are easily
convertible to each other.

Ji Sy J3 Jy s
My O]1]0]1]0
Ji oSy Js Jy Js MylOJO|1]0]1
(3[1]2]1]2] Ms|1]0]0|0|0
FIGURE 2. Position vector FIGURE 3. Position matrix
(direct representation) (indirect representation)

4.2. Particles velocity, pbest and nbest. Velocity of each particle is considered as a
m X n matrix whose elements are in range [—Viax, Vinax]- In other words if Vj is the
velocity matrix of kth particle, then:

Vi(i,7) € [~ Vinax, Vinax] (Vi,7), i€ {1,2,..m}, je{l,2,...,n} (8)

In order to represent pbest and nbest, direct and indirect encoding could be used the
same as particles positions. The selection of representation method of pbest and nbest
depends on particle position representation method; if direct encoding is used to represent
particles, then the same encoding must be used to represent pbest and nbest, and in the
same way if indirect encoding is used, the same encoding method should be applied to
pbest and nbest. In indirect encoding pbest and nbest are m xn matrices and their elements
are 0 or 1 as position matrices and in direct encoding pbest and nbest are 1 X n vectors the
same as position vectors. pbest; represents the best position that kth particle has visited
since the first time step and nbest; represents the best position which kth particle and its
neighbors have visited from the beginning of the algorithm. In each time step pbest and
nbest should be updated; first fitness value of each particle (for exampleX}) is estimated
and in the case its value is greater than the fitness value of pbest; (pbest associated with
X}), pbesty, is replaced with Xj. For updating nbest in each neighborhood, pbests are
used so that if in the neighborhood, fitness value of pbest is greater than nbest, then
nbest is replaced with pbest. In the present paper, star topology is used to describe the
neighborhood of particles (global best).

4.3. Particle updating. First we explain updating of the particles for the case of indirect
encoding and then we will derive a method for updating particles in direct encoding. For
the case of indirect encoding Equation (9) is used for updating the velocity matrix and
then Equation (10) for position matrix of each particle.

VI, ) = Vid, §) + eor(pbestl, (i, ) — X1(i, 7)) + cara(nbesty (i, ) — X4(i,5))  (9)
. (t+1) /. - (t+1) /. . .
@ oy L LA (VT ) = max{V (6 )}, Vi€ {1,2, .., m} 1
e (6d) 0 otherwise (10)

In Equation (9) Vi{(4, j) is the element in ith row and jth column of the kth velocity
matrix in ¢th time step of the algorithm and X} (i, j) denotes the element in ith row and
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jth column of the kth position matrix in ¢th time step. Equation (10) means that in
each column of position matrix, value 1 is assigned to the element whose corresponding
element in velocity matrix has the maximum value in its corresponding column. If in a
column of velocity matrix there is more than one element with maximum value, then one
of these elements is selected randomly and 1 assigned to its corresponding element in the
position matrix.

Example 1. Assume in a problem with 5 jobs and 3 machines X} = (1,2,2,1,3),
pbest, = (2,2,1,3,2), ¢; =2, co =0, and r; = 75 = 1. Regarding the presented setting,
only pbest is taken into account for velocity updating. Assume the velocity matrix, V}, is
generated randomly as Figure 4.

JoJy Js Jy Js
M, [4]2[44]3
My [1[3[5]0]2
My 21331

F1GURE 4. Vj, the velocity matrix in the above example

For velocity updating, first position vector (Xj) and pbest vector (pbest;) must be
converted to their equivalent position matrix as shown in Figures 5 and 6, and then using
Equation (9) we can update velocity matrix as shown in Figure 7. Using updated velocity
matrix and Equation (10) the position matrix can be estimated as shown in Figure 8. Also
the obtained position matrix can be converted to X = (2,2,1,1,2) in direct encoding.

Jv S Jg Jy Iy Ju S Jg Iy Js
My 100|110 My|O|O| 1,00
My O 11,00 My| 11,0011
Ms| OO 0]0]1 Ms|{ OO0 10
FIGURE 5. Equivalent posi- FIGURE 6. Equivalent posi-
tion matrix with X}, tion matrix with pbesty
Jv Jy I3 Jy s Jv Jo I3 Jy Js
My| 2|26 |23 My O]O]1]1]0
My | 313131010 My|1|1,0]0]1
Ms| 2 |-1]-3|-1|-1 Ms|{ OO0 0|0
FiGURE 7. Updated veloc- FiGure 8. Updated posi-
ity matrix tion matrix

As it can be seen in this example the particle has moved toward pbets and in case the
updating process is repeated once more, the particle position will be the same as pbest
position. Converting particles position from direct encoding to the indirect one or indirect
encoding to the direct one is a time consuming operation. Using the above example we
present a method for updating particles in direct encoding without converting particles
into indirect encoding. As mentioned in Section 4.1 the value of X(i, ) and pbest (i, j)
could be 0 or 1. Hence c17y (pbesty(i,j) — Xy (i, 7)) in Equation (9) can be 0, +(c; X rq),
or —(c; X r1). In the above example if Xy(i,j) = pbesty(i,7), then the corresponding

element in velocity matrix, V(4,j), does not change and if Xy (i,7) # pbesty(i,j), then
two cases arise:
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1) pbesti(i,j) =1 and Xy(i,5) = 0; in this case: Vi (i,7) = Vi(i,5) + 1 x ry
2) pbesty(i,j) = 0 and Xy (i,7) = 1; in this case: Vi(i,j) = Vi(i,7) —c1 X 1

pbest(i,j) = 1 in direct encoding means pbesty(j) = ¢ and X(7,j) = 1 means Xy (j) =
i. According to the above points, if pbesty(j) = z and X (j) = ¢ and z # ¢ then ¢; x r;
is added to Vi(z,7) and subtracted from Vj(q, j). Regarding the above mentioned points
and Equation (9) the updating algorithm for velocity matrix using direct encoding will
be as follow:

for each particle k =1, ..., P do
for each job j =1,...,n do
q=Xi(j);
z = pbesti(j);
s = gbesty(j);
if ¢ # z then
Vi(q,J) = Vilq, j) — 1 X 11;
V;C(Za]) = V;c(za]) +c1 X 7y;
end
if ¢# s then
Vi(q,7) = Vi(q, J) — ca X 19;
Vk(57j> = ‘/;C(Sh]) + G2 X Ta;
end
end
end

FI1GURE 9. The algorithm for velocity updating in direct encoding

After updating the velocity matrix using the mentioned algorithm, the position vector
of each particle is obtained as follows: For each element of position vector, a machine
from its corresponding column in velocity matrix is chosen which has the maximum value
in that column. Formally:

X(j) = ¢ i Vilp,)) = max{Vi(i.j)} )
Vi€ (1,2,...,n) Vie(1,2,...,m)

If in a column of velocity matrix there is more than one element with maximum value,
then one of machines which corresponds these elements is selected randomly. In our
proposed method we use direct representation for particles because it is faster than the
indirect method.

4.4. Fitness evaluation. In this paper makespan and flowtime are used to evaluate the
performance of scheduler simultaneously. Because makespan and flowtime values are in
incomparable ranges and the flowtime has a higher magnitude order over the makespan,
the value of mean flowtime, flowtime/m, is used to evaluate flowtime where m is the
number of available machines. The fitness value of each solution can be estimated using
Equation (12).

fitness = (\.makespan + (1 — \).mean_flowtime)™" (12)

A in Equation (12) is used to regulate the effectiveness of parameters used in this equation.
A = 0 means that only flowtime is considered in fitness evaluation and A = 1 means
that only makespan is considered in fitness evaluation. Also A € (0, 1) means that both
parameters are taken into account in fitness estimation. The greater )\, the more attention
is paid by the scheduler in minimizing makespan and vise versa. The smaller makespan
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and flowtime in Equation (12), the grater fitness value and hence a better solution it is
regarded. Since makespan is the primary objective in grid systems, in this paper the value
of A = 0.7 has been fixed after a preliminary tuning process.

The pseudo code of the proposed PSO algorithm can be stated as Figure 10.

5. Implementation and Experimental Results. In order to evaluate the performance
of the proposed method, the approach was compared with genetic algorithm (GA) [15],
ant colony optimization (ACO) [36], fuzzy particle swarm algorithm (FPSO) [16] and
continuous particle swarm optimization (CPSO) [25]. The first three are proposed for
grid job scheduling and the fourth is used for task assignment problem in multiprocessor
systems.

These methods are implemented using VC++ and run on a Pentium IV 3.2 GHz PC
as well as ours. In order to optimize the performance of the proposed method and other
methods, fine tuning has been performed and best values for their parameters are selected.
For the proposed method the following ranges of parameter values were tested: cl and
c2 =11, 3], P = [10, 100], Viax = [10, 100]. Based on experimental results the proposed
PSO algorithm performs best under the following settings: ¢l = ¢2 = 2.0, P = 50,
Vinax = 40.

5.1. Benchmark problem. We used the benchmark in [15] for simulating the heteroge-
neous computing environments. This model is based on expected time to compute (ETC)
matrix for 512 jobs and 16 machines. The instances of the benchmark are classified into
12 different types of ETC matrices according to the three following metrics: job hetero-
geneity, machine heterogeneity, and consistency. In ETC matrix the amount of variance
among the execution times of jobs for a given machine is defined as job heterogeneity.
Machine heterogeneity represents the variation that is possible among the execution times
for a given job across all the machines. Also an ETC matrix is said to be consistent when-
ever a machine M; executes any job J; faster than machine My; in this case, machine M,
executes all jobs faster than machine Mj. In contrast, inconsistent matrices characterize
the situation where machine M; may be faster than machine M}, for some jobs and slower
for others. Partially-consistent matrices are inconsistent matrices that include a consis-
tent sub-matrix of a predefined size [15]. Instances consist of 512 jobs and 16 machines
and are labeled as u-x-yy-zz as follows:

e u means uniform distribution used in generating the matrices.

e x shows the type of inconsistency; ¢ means consistent, i means inconsistent and p
means partially-consistent.

e yy indicates the heterogeneity of the jobs; hi means high and lo means low.

e 77 represents the heterogeneity of the machines; hi means high and lo means low.

For example “u-i-lo-hi” means an inconsistent environment with low heterogeneity in
jobs and high heterogeneity in machines. This benchmark is used in some previous works
(e.g. [12,14,15,29,35]) for simulating heterogeneous computing systems.

5.2. Experimental results. In our experiments, for generating initial population of the
compared methods one solution is generated using min-min heuristic (that can achieve a
very good reduction in makespan and flowtime [12,15]) and the others generated randomly
from a uniform distribution. The statistical results of over 50 independent runs are
compared in Table 1 for makespan. In this table the first column indicates the instance
name, the second, third, fourth, fifth, sixth and seventh columns indicate the achieved
value by min-min, GA [15], ACO [36], CPSO [25], FPSO [16] and proposed method
(DPSO) respectively. Also Figure 11 shows the geometric mean of achieved makespan
for 12 instances. As can be seen from Table 1 and Figure 11 our proposed method can
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Create and initialize a D-dimensional swarm with P particles
//velocities are m x n matrices and X, pbest, gbest are 1 x n vectors (direct encoding)
repeat
for each particle k =1,..., P do
if f(Xx) > f(pbesty) then // f() evaluates fitness function (Equation (12))
pbesty, = X;
end
if f(pbesty) > f(nbesty) then
nbesty = pbesty;
end
end
for each particle k=1,...,P do
for each job j=1,...,n do
q = Xx(j);
z = pbest(7);
s = gbesty(j);
if g # 2z then
Vi(a,7) = Va(q, j) — 1 x 713
Vii(2,7) = Vi(z,7) + c1 x 113
end
if ¢g# s then
Vk(Q?J) = Vk(qvj) — C2 X T2;
Vie(s,5) = Vi(s,7) + ca X 195
end
end
for each job j=1,...,n do
if (Vie(1,2,...,m)) Vi(p,j) = max{Vi(i,j)} then
Xi(j) = 5
end
end
end
until stopping condition is true;

F1GURE 10. Pseudo code of the proposed method

achieve best results over makespan in most cases. FPSO and ACO can achieve admissible
results in most cases too. Also we can see that GA is the best choice when we have a
low heterogeneity in jobs and machines. It is evident that CPSO can not obtain a good
reduction in makespan. This is because of the discrete nature of the benchmark which we
used.

Table 2 depicts the statistical results of over 50 independent runs for flowtime. Also
Figure 12 shows the geometric means of flowtime for 12 cases. We realize that reducing in
makespan amount can lead to increasing in flowtime and since in most cases CPSO can
not reduce the makespan effectively, it can achieve an admissible reduction in flowtime.
Also we can see that our proposed method obtains maximum amounts of flowtime in
most cases. In this paper we considered the makespan as primary objective (note that
we set A = 0.7 in fitness function) and as a result our proposed method tries to minimize
makespan as primary objective which leads to increasing in flowtime amount.

Figure 13 shows the geometric mean of fitness values of compared methods over 12
mentioned cases. It is evident that our proposed method can obtain highest fitness values.

Also ACO and FPSO are in the next ranks.
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TABLE 1. Comparison of statistical results between our proposed method
and others over makespan

Instance min-min GA ACO CPSO FPSO DPSO
u-c-hi-hi 8145395 7921686 7874958 8097772 7903366 7741006
u-c-hi-lo 164490 161923 161404 162324 161289 161035
u-c-lo-hi 279651 275260 274290 275565 272596 268957
u-c-lo-lo 5468 5293 5352 5361 5295 5332
u-i-hi-hi 3573987 3371842 3235156 3406340 3286295 3284287
u-i-hi-lo 82936 80620 80732 80936 80780 79982
u-i-lo-hi 113944 109832 109021 111944 110752 107276
u-i-lo-lo 2734 2619 2635 2703 2628 2652
u-p-hi-hi 4701249 4576995 4533476 4609927 4539559 4479443
u-p-hi-lo 106322 103961 104186 105221 103349 103711
u-p-lo-hi 157307 152046 153042 153913 153688 149437
u-p-lo-lo 3599 3412 3466 3505 3439 3416
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FIGURE 11. Geometric mean of makespan

TABLE 2. Comparison of statistical results between our proposed method
and others over flowtime

Instance min-min GA ACO CPSO FPSO DPSO
u-c-hi-hi 115162284 115715373 116660362 114960061 116156174 115721406
u-c-hi-lo 2480404 2477784 2483428 2468163 2483921 2480406
u-c-lo-hi 3918515 3902067 3952086 3881783 3926216 3955765
u-c-lo-lo 80354 81210 80539 79819 81382 80787
u-i-hi-hi 45696141 46728285 46248373 46206878 47078048 47116485
u-i-hi-lo 1214038 1228876 1216711 1215087 1220823 1220894
u-i-lo-hi 1577886 1603161 1582819 1577183 1593862 1599217
u-i-lo-lo 39605 40295 39644 39583 40002 39904
u-p-hi-hi 63516912 64138008 64235803 63620547 64664919 64988191
u-p-hi-lo 1565877 1574007 1575167 1565925 1582217 1568909
u-p-lo-hi 2118116 2154052 2141610 2138413 2135065 2163470
u-p-lo-lo 51399 52129 51537 51256 52020 52074
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FIGURE 12. Geometric mean of flowtime
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FIGURE 13. Geometric mean of obtained fitness values

Figure 14 illustrates the mean of standard deviation. CPSO and ACO have the low-
est standard deviation while our proposed method has an admissible standard deviation
(lower than 1.5%). Also Figure 15 shows a comparison of CPU times required to achieve
results between compared methods. It is evident that the proposed method needs the
lowest time for convergence in most cases, but by increasing the number of tasks and
problem search space, the time for achieving results is increased in the proposed method
rather than ACO and GA and in case of 1024 tasks, the ACO and GA schedulers need

lower time for convergence.

6. Conclusions. Because of the heterogeneous and dynamic nature of grid environment
we can not use the conventional scheduling methods in grid. This paper presents a ver-
sion of Discrete Particle Swarm Optimization (DPSO) algorithm for grid job scheduling.
Scheduler aims minimizing makespan and flowtime simultaneously. The performance of
the proposed method was compared to those reported in recent work which used GA,
ACO, fuzzy PSO and continuous PSO through carrying out exhaustive simulation tests
and different settings. Experimental results show that our proposed method surpasses
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others in most cases. In future we aim at using our proposed method for grid job sched-
uling with a more quality of service constraints.
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